Use Graph To Investigate Limit

  • Thread starter Thread starter nycmathguy
  • Start date Start date
  • Tags Tags
    Graph Limit
Click For Summary
SUMMARY

The forum discussion centers on the investigation of limits using a graph for functions f(x) as x approaches a specific value c. For Question 24, the left-hand limit (LHL) does not equal the right-hand limit (RHL), leading to the conclusion that the limit does not exist. In Question 26, despite the presence of holes in the graph at points (c, 2) and (c, 3), the limit is determined to be 2, with LHL equaling RHL, confirming that the limit does not exist. The discussion emphasizes that the existence of holes does not inherently affect limit calculations.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with left-hand and right-hand limits (LHL and RHL)
  • Ability to interpret graphical representations of functions
  • Knowledge of continuity and discontinuity in functions
NEXT STEPS
  • Study the concept of limits in calculus, focusing on one-sided limits
  • Learn how to analyze discontinuities in functions
  • Explore the implications of holes in graphs on limit existence
  • Practice solving limit problems using graphical methods
USEFUL FOR

Students of calculus, educators teaching limits, and anyone seeking to deepen their understanding of function behavior near discontinuities.

nycmathguy
Homework Statement
Graphs and Limits
Relevant Equations
Piecewise Functions
For questions 24 and 26, Use the graph to investigate limit of f(x) as x→c. If the limit does not exist, explain why.

Question 24

For (a), the limit is 1.

For (b), the limit is cannot be determined due to the hole at (c, 2).

For (c), LHL does not = RHL.

I conclude the limit does not exist.

You say?

Question 26

For (a), the limit is 2.

For (b), the limit cannot be determined due to the hole at (c, 3).

For (c), LHL does not = RHL.

I conclude the limit does not exist.

You say?
 

Attachments

  • Screenshot_20210613-144516_Drive.jpg
    Screenshot_20210613-144516_Drive.jpg
    8.5 KB · Views: 160
Last edited by a moderator:
Physics news on Phys.org
nycmathguy said:
You say?
Did you forget to post the graph for these questions?
Also, just because there is a hole in the graph doesn't mean that a limit doesn't exist.
 
Mark44 said:
Did you forget to post the graph for these questions?
Also, just because there is a hole in the graph doesn't mean that a limit doesn't exist.

Picture has been added.
 
Ques. 24
nycmathguy said:
For (b), the limit is cannot be determined due to the hole at (c, 2).
No, this is incorrect. The presence or absence of a hole doesn't affect the limit.
As x approaches c from the right, what are the function values doing?

nycmathguy said:
I conclude the limit does not exist.
This is the correct conclusion, but you've based it on faulty reasoning.

Ques. 26
nycmathguy said:
For (a), the limit is 2.

For (b), the limit cannot be determined due to the hole at (c, 3).
No to both. As x approaches c from the left, what value are the function values approaching? The fact that the point (c, 2) is on the graph has nothing to do with what the limit might be.
As x approaches c from the right, what are the function values doing, again ignoring the point at (c, 2)?

nycmathguy said:
I conclude the limit does not exist.
Correct conclusion but based on faulty reasoning.
 
  • Like
Likes   Reactions: nycmathguy
Mark44 said:
Ques. 24No, this is incorrect. The presence or absence of a hole doesn't affect the limit.
As x approaches c from the right, what are the function values doing?

This is the correct conclusion, but you've based it on faulty reasoning.

Ques. 26No to both. As x approaches c from the left, what value are the function values approaching? The fact that the point (c, 2) is on the graph has nothing to do with what the limit might be.
As x approaches c from the right, what are the function values doing, again ignoring the point at (c, 2)?

Correct conclusion but based on faulty reasoning.

Let me reply to yours one at a time from top to bottom.

1. As x tends to c from the right, f(x) goes to a height of 2.

2. Let me try 26 again.

As x tends to c from the left, f(x) goes to a height of 1.

As x tends to c from the right, f(x) goes to a height of 3.

Since the LHL does = THE RHL, the limit for f(x) does not exist.

You now say?
 
They're all fine now.
 
  • Like
Likes   Reactions: nycmathguy
Mark44 said:
They're all fine now.

This makes me feel better. I am slowly getting this limits stuff. I also know that limits is calculus 3 is very different. I am ok so far in the textbook.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
3
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K