- #1

nycmathguy

- Homework Statement
- Determine a Limit Algebraically

- Relevant Equations
- Linear Expression

Quadratic Expression

Investigate A Limit

Investigate the limit of f(x) as x tends to c at the given c number.

Attachment has been deleted.

Let me see.

Let c = 2

I think I got to take the limit of f(x) as x tends to 2 from the left and right. What about as x tends to 2 (from the left and right at the same time)?

Find the limit of (x + 2) as x tends to 2 from the left side.

(2 + 2) = 4

Find the limit of x^2 as x tends to 2 from the right side.

(2)^2 = 4

LHL = RHL

Thus, the limit of f(x) as x tends to 2 is 4.

Is this right?

What about the middle section of this piecewise function? There we see f(x) is 4 if x = 2. I think we can say concerning the middle section that the limit of f(x) as x tends to 2 from the left and right at the same time is 4.

Yes?

Investigate the limit of f(x) as x tends to c at the given c number.

Attachment has been deleted.

Let me see.

Let c = 2

I think I got to take the limit of f(x) as x tends to 2 from the left and right. What about as x tends to 2 (from the left and right at the same time)?

Find the limit of (x + 2) as x tends to 2 from the left side.

(2 + 2) = 4

Find the limit of x^2 as x tends to 2 from the right side.

(2)^2 = 4

LHL = RHL

Thus, the limit of f(x) as x tends to 2 is 4.

Is this right?

What about the middle section of this piecewise function? There we see f(x) is 4 if x = 2. I think we can say concerning the middle section that the limit of f(x) as x tends to 2 from the left and right at the same time is 4.

Yes?