atavistic said:
Yes, this is what I also believe but you are wrong at the point that magnetic force does the work, its actually the induced electric field that does the work.
You are referring to the Maxwell equation
-\frac{d\phi_{B}}{dt} = \int E \cdot dl
and I will certainly concede that it can be said that it is the induced
E which accelerates the charges.
I guess my thing is that arguing from Maxwell's equations has long seemed to me a bit like saying "the phenomenon works this way because the math says so". The equations are a description of the behavior of electromagnetic fields, but I don't feel that they necessarily give insight into what is happening physically. (Though maybe that's just me...)
In "motional emf", you can obtain the magnitude of the induced emf from Faraday/Maxwell and get the direction either from that or "Lenz' Law", but it is also possible to look at the motion of the "charge carriers" in the ambient magnetic field and obtain the same result from calculating the magnetic force through q
v x B. For certain other situations, it is also possible to liken the magnetic flux change to a relative motion of charges and magnetic field to obtain a magnetic force. (This can be followed off into the interesting feature that "magnetic force" is a consequence of relative motion, and thus, to many people, not really a force at all.) I am still investigating this analogy to see how far it can actually be pushed; maybe the situation in this problem is too far for it to go...
EDIT: As I think about this a bit more, here's something else that bothers me about the "induced E field" description (though it certainly seems implied from the equation). Somehow, a magnetic flux change through a conductive loop is making an electric field that is a closed loop, without a "source" in the circuit (or maybe each point on the loop is an infinitesimal source). So it can be seen immediately from this why there's a problem with constructing a potential function for it.
Thnx for looking into my doubt that most high school students don't understand or don't care about.
... or even some lecturers and textbook authors, perhaps. The point isn't particularly discussed in most of the books I'm familiar with, but it does sort of beg the question as to why the inductor has a "voltage drop", but not electric potential. I guess I'd put it down to sloppy use of the term "voltage".