Use relativity and the Larmor formula to calculate Lienard's formula

unified
Messages
43
Reaction score
0
Homework Statement
Use relativity and the Larmor formula to calculate Lienard's formula.
Relevant Equations
Larmor Formula, Lienard Formula
I am trying to understand the solution to exercise 12.71 in the document linked below which accompanies Griffith's book on electrodynamics. The problem states that we are to use the Larmor formula and relativity to derive the Lienard formula. $$Larmor \ {} formula: P = \frac{\mu_0q^2a^2}{6\pi c} \ {} when \ {} v = 0$$ $$Lienard's \ {} formula: P = \frac{\mu_0q^2\gamma^6}{6\pi c}\left (a^2 - \left|\frac{\mathbf v \ {} \times \ {} \mathbf a}{c}\right|^2\right)$$ In the book it mentions that ##k^\mu = \frac {dp^\mu}{d\tau}## is a four-vector and ##k^0 = mc\frac {d^2t}{d\tau^2} = \frac {1}{c}\frac{dE}{d\tau}##. As you can see in the solution, from this Griffiths begins searching for any four-vector he can think of whose time component is equal to the Larmor formula when v = 0, concluding that the time component of such a four-vector should be ##\frac{1}{c}\frac{dE}{d\tau}##. The four-vector he gives is $$k^\mu = \frac{1}{4 \pi \epsilon_0}\frac{2}{3}{q^2}{c^5}\alpha^v\alpha_v\eta^\mu$$ The time component equals the Larmor formula (times 1/c) when v = 0, and he calculates P in terms the time component and finds that P is equal to Lienard's formula.
$$\\$$ It's hard for me to see what motivated Griffiths to start searching for any four-vector he could think of whose time component is the Larmor formula (times 1/c) for v = 0, and then reach the conclusion that the time component must be ##\frac{1}{c}\frac{dE}{d\tau}##. Moreover, ##\frac{d^2t}{d\tau^2}## = 0 if v = 0, so isn't the proper power and therefore the ordinary power zero when v = 0, in contradiction to the Larmor formula? The four-vector he's constructed is not ##\frac {dp^\mu}{d\tau}##, and the time component is not ##mc\frac{d^2t}{d\tau^2}##, although his notation suggests otherwise, writing ##k^0## at the beginning of his solution, and later ##k^\mu## for his four-vector. So, I can't understand how he came up with this idea and conclusion, and how these formulas are consistent with ##\frac{d^2t}{d\tau^2} = 0## when v = 0 which should imply that the proper power and therefore the ordinary power are zero when v = 0.

https://media.physicsisbeautiful.com/resources/2019/02/18/solutions_manual.pdf
 
Last edited:
Physics news on Phys.org
To clarify, in the book by Griffiths, we have ##p^\mu \equiv m\frac{d}{d\tau}\eta^\mu## and ##E \equiv cp^0##, so by definition, ##\frac{dE}{d\tau} = c\frac{dp^0}{d\tau} = m\frac{\mathbf u \cdot \mathbf a}{(1 - u^2/c^2)^2}##. Evaluating the proper power in a coordinate system where the particle is instantaneously at rest, ##\mathbf u = 0## we have ##\frac{dE}{d\tau} = 0##, which seems to disagree with the Larmor formula. I do not question the Larmor formula, but I'm lost on how we're defining energy and the power of the accelerating charged particle. Obviously, it couldn't be the presentation given above. Yet, that was simply how the energy is defined in the book and shouldn't be wrong by definition.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top