Use relativity and the Larmor formula to calculate Lienard's formula

Click For Summary
SUMMARY

The discussion focuses on deriving Lienard's formula from the Larmor formula using principles of relativity, as outlined in Griffith's "Introduction to Electrodynamics." The Larmor formula states that power P is given by $$P = \frac{\mu_0q^2a^2}{6\pi c}$$ when velocity v equals zero. In contrast, Lienard's formula is expressed as $$P = \frac{\mu_0q^2\gamma^6}{6\pi c}\left (a^2 - \left|\frac{\mathbf v \times \mathbf a}{c}\right|^2\right)$$. The discussion raises concerns about the consistency of Griffith's approach, particularly regarding the four-vector definitions and the implications of zero velocity on power calculations.

PREREQUISITES
  • Understanding of the Larmor formula and its application in electrodynamics.
  • Familiarity with Lienard's formula and its derivation.
  • Knowledge of four-vectors in the context of special relativity.
  • Basic principles of energy and power in accelerating charged particles.
NEXT STEPS
  • Study the derivation of Lienard's formula from the Larmor formula in Griffith's "Introduction to Electrodynamics."
  • Explore the concept of four-vectors and their applications in relativistic physics.
  • Investigate the implications of velocity on power calculations in electrodynamics.
  • Review the definitions of energy and power for accelerating charged particles in various reference frames.
USEFUL FOR

Students of physics, particularly those studying electrodynamics, researchers exploring relativistic effects on charged particles, and educators seeking to clarify the relationship between Larmor and Lienard's formulas.

unified
Messages
43
Reaction score
0
Homework Statement
Use relativity and the Larmor formula to calculate Lienard's formula.
Relevant Equations
Larmor Formula, Lienard Formula
I am trying to understand the solution to exercise 12.71 in the document linked below which accompanies Griffith's book on electrodynamics. The problem states that we are to use the Larmor formula and relativity to derive the Lienard formula. $$Larmor \ {} formula: P = \frac{\mu_0q^2a^2}{6\pi c} \ {} when \ {} v = 0$$ $$Lienard's \ {} formula: P = \frac{\mu_0q^2\gamma^6}{6\pi c}\left (a^2 - \left|\frac{\mathbf v \ {} \times \ {} \mathbf a}{c}\right|^2\right)$$ In the book it mentions that ##k^\mu = \frac {dp^\mu}{d\tau}## is a four-vector and ##k^0 = mc\frac {d^2t}{d\tau^2} = \frac {1}{c}\frac{dE}{d\tau}##. As you can see in the solution, from this Griffiths begins searching for any four-vector he can think of whose time component is equal to the Larmor formula when v = 0, concluding that the time component of such a four-vector should be ##\frac{1}{c}\frac{dE}{d\tau}##. The four-vector he gives is $$k^\mu = \frac{1}{4 \pi \epsilon_0}\frac{2}{3}{q^2}{c^5}\alpha^v\alpha_v\eta^\mu$$ The time component equals the Larmor formula (times 1/c) when v = 0, and he calculates P in terms the time component and finds that P is equal to Lienard's formula.
$$\\$$ It's hard for me to see what motivated Griffiths to start searching for any four-vector he could think of whose time component is the Larmor formula (times 1/c) for v = 0, and then reach the conclusion that the time component must be ##\frac{1}{c}\frac{dE}{d\tau}##. Moreover, ##\frac{d^2t}{d\tau^2}## = 0 if v = 0, so isn't the proper power and therefore the ordinary power zero when v = 0, in contradiction to the Larmor formula? The four-vector he's constructed is not ##\frac {dp^\mu}{d\tau}##, and the time component is not ##mc\frac{d^2t}{d\tau^2}##, although his notation suggests otherwise, writing ##k^0## at the beginning of his solution, and later ##k^\mu## for his four-vector. So, I can't understand how he came up with this idea and conclusion, and how these formulas are consistent with ##\frac{d^2t}{d\tau^2} = 0## when v = 0 which should imply that the proper power and therefore the ordinary power are zero when v = 0.

https://media.physicsisbeautiful.com/resources/2019/02/18/solutions_manual.pdf
 
Last edited:
Physics news on Phys.org
To clarify, in the book by Griffiths, we have ##p^\mu \equiv m\frac{d}{d\tau}\eta^\mu## and ##E \equiv cp^0##, so by definition, ##\frac{dE}{d\tau} = c\frac{dp^0}{d\tau} = m\frac{\mathbf u \cdot \mathbf a}{(1 - u^2/c^2)^2}##. Evaluating the proper power in a coordinate system where the particle is instantaneously at rest, ##\mathbf u = 0## we have ##\frac{dE}{d\tau} = 0##, which seems to disagree with the Larmor formula. I do not question the Larmor formula, but I'm lost on how we're defining energy and the power of the accelerating charged particle. Obviously, it couldn't be the presentation given above. Yet, that was simply how the energy is defined in the book and shouldn't be wrong by definition.
 

Similar threads

Replies
1
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
Replies
10
Views
2K
Replies
4
Views
662