DivGradCurl
- 364
- 0
I think I got pretty close to the answer to this problem. However, I just can't obtain the right approximation at the end. Please, help me find where I made a mistake.
Thanks.
--------------------------------------------------------------
Use a power series to approximate the definite integral to six decimal places.
\int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx
--------------------------------------------------------------
\frac{d}{dx} \left[ \arctan \left( x^4 \right) \right] = \frac{4x^3}{1+x^8}
\frac{1}{1+x^8}=\frac{1}{1-\left( -x^8 \right) } = \sum _{n=0} ^{\infty} \left( -x^8 \right) = \sum _{n=0} ^{\infty} \left( -1 \right) ^n x^{8n}
\frac{d}{dx} \left[ \arctan \left( x^4 \right) \right] = 4 \sum _{n=0} ^{\infty} \left( -1 \right) ^n x^{8n+3}
\arctan \left( x^4 \right) = 4 \sum _{n=0} ^{\infty} \int \left( -1 \right) ^n x^{8n+3} dx = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+4}}{8n+4}
x^2 \arctan \left( x^4 \right) dx = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+6}}{8n+4}
\int x^2 \arctan \left( x^4 \right) dx = \mathrm{C} + \sum _{n=0} ^{\infty} \int \frac{\left( -1 \right) ^n x^{8n+6}}{8n+4} = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+7}}{\left( 8n+4 \right) \left( 8n+7 \right)} = \mathrm{C} + \frac{x^7}{28} - \frac{x^{15}}{180} + \frac{x^{23}}{460} - \frac{x^{31}}{868} + \cdots
\int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx = \left[ \frac{x^7}{28} - \frac{x^{15}}{180} + \frac{x^{23}}{460} - \frac{x^{31}}{868} + \cdots \right] _0 ^{1/3} = \frac{1}{2^2\cdot 3^7\cdot 7} - \frac{1}{2^2\cdot 3^{17} \cdot 5} + \frac{1}{2^2\cdot 3^{23} \cdot 5 \cdot 23} - \frac{1}{2^2 \cdot 3^{31} \cdot 7 \cdot 31} + \cdots
b_1 = \frac{1}{2^2\cdot 3^{17} \cdot 5} \approx 3.9 \times 10^{-10} < 10^{-6} \Longrightarrow \int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx \approx \frac{1}{2^2\cdot 3^7\cdot 7} - \frac{1}{2^2\cdot 3^{17} \cdot 5} \approx 0.000016
The correct answer would be 0.000065.
Thanks.
--------------------------------------------------------------
Use a power series to approximate the definite integral to six decimal places.
\int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx
--------------------------------------------------------------
\frac{d}{dx} \left[ \arctan \left( x^4 \right) \right] = \frac{4x^3}{1+x^8}
\frac{1}{1+x^8}=\frac{1}{1-\left( -x^8 \right) } = \sum _{n=0} ^{\infty} \left( -x^8 \right) = \sum _{n=0} ^{\infty} \left( -1 \right) ^n x^{8n}
\frac{d}{dx} \left[ \arctan \left( x^4 \right) \right] = 4 \sum _{n=0} ^{\infty} \left( -1 \right) ^n x^{8n+3}
\arctan \left( x^4 \right) = 4 \sum _{n=0} ^{\infty} \int \left( -1 \right) ^n x^{8n+3} dx = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+4}}{8n+4}
x^2 \arctan \left( x^4 \right) dx = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+6}}{8n+4}
\int x^2 \arctan \left( x^4 \right) dx = \mathrm{C} + \sum _{n=0} ^{\infty} \int \frac{\left( -1 \right) ^n x^{8n+6}}{8n+4} = \mathrm{C} + \sum _{n=0} ^{\infty} \frac{\left( -1 \right) ^n x^{8n+7}}{\left( 8n+4 \right) \left( 8n+7 \right)} = \mathrm{C} + \frac{x^7}{28} - \frac{x^{15}}{180} + \frac{x^{23}}{460} - \frac{x^{31}}{868} + \cdots
\int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx = \left[ \frac{x^7}{28} - \frac{x^{15}}{180} + \frac{x^{23}}{460} - \frac{x^{31}}{868} + \cdots \right] _0 ^{1/3} = \frac{1}{2^2\cdot 3^7\cdot 7} - \frac{1}{2^2\cdot 3^{17} \cdot 5} + \frac{1}{2^2\cdot 3^{23} \cdot 5 \cdot 23} - \frac{1}{2^2 \cdot 3^{31} \cdot 7 \cdot 31} + \cdots
b_1 = \frac{1}{2^2\cdot 3^{17} \cdot 5} \approx 3.9 \times 10^{-10} < 10^{-6} \Longrightarrow \int _0 ^{1/3} x^2 \arctan \left( x^4 \right) dx \approx \frac{1}{2^2\cdot 3^7\cdot 7} - \frac{1}{2^2\cdot 3^{17} \cdot 5} \approx 0.000016
The correct answer would be 0.000065.