Using a Surface Integral for Mathematical Analysis of the Area of an Island

daphnelee-mh
Messages
62
Reaction score
4
Homework Statement
(Attached below)
Relevant Equations
A=sqrt[1+(dz/dx)^2+(dz/dy)^2]dA
1593786915216.png

I am not clearly understand what the question requests for, is it okay to continue doing like this ? Kindly advise, thanks
 
Last edited by a moderator:
Physics news on Phys.org
The shape of the island is an upside-down paraboloid. The integral looks like everything is OK except the ##r## limits should be reversed. You want to integrate from the smallest to largest values of ##r## to get a positive answer.
 
  • Like
Likes daphnelee-mh
LCKurtz said:
The shape of the island is an upside-down paraboloid. The integral looks like everything is OK except the ##r## limits should be reversed. You want to integrate from the smallest to largest values of ##r## to get a positive answer.
I believe you're right. I looked at it wrong.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top