(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose that A is a 2x2 matrix with eigenvalues 0 and 1. Using diagonalization, show that A^{2}= A

3. The attempt at a solution

Let [tex]A=\begin{pmatrix}a&b\\c&d\end{pmatrix}[/tex]

Av=λv where [tex]v=\begin{pmatrix}x\\y\end{pmatrix}[/tex] and x,y≠0

If λ=0 then [tex]ax+by=0[/tex] and [tex]cx+dy=0[/tex]

If λ=1 then [tex]ax+by=1[/tex] and [tex]cx+dy=1[/tex]

so Av-λv=0, then Av-λIv=0, then (A-λI)v=0. Since v≠0, then (A-λI)=0

so for λ=0 [tex]\begin{pmatrix}a&b\\c&d\end{pmatrix}[/tex] and [tex]ax+by=0[/tex] and [tex]cx+dy=0[/tex]

For λ=1 [tex]\begin{pmatrix}a-1&b\\c&d-1\end{pmatrix}[/tex] and [tex]ax-x+by=1[/tex] and [tex]cx+dy-y=1[/tex]

We must find two lin. ind. vectors such that we can create X where the first column of X is the first vector, and the second column of X is the second vector.

[tex]X^{-1}AX= \begin{pmatrix}0&0\\0&1\end{pmatrix}[/tex]

If this is true, then [tex]X^{-1}A^{2}X= \begin{pmatrix}0&0\\0&1\end{pmatrix}[/tex]

The problem is, I'm not quite sure how to prove any of this

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Using diagonalization, prove the matrix equals it's square

**Physics Forums | Science Articles, Homework Help, Discussion**