Using Gauss' law to find the induced surface charge density ##\sigma##

Click For Summary
The discussion revolves around using Gauss' law to determine the induced surface charge density, ##\sigma##. The initial calculations show that the electric field inside a conductor is zero, leading to the equation ##\sigma = -\frac{\lambda}{2\pi R}##. The user initially calculates ##\sigma## as ##-2.6 \times 10^{-7} C/m^2##, but realizes the correct value should be ##+26 nC/m^2##, indicating a miscalculation by a factor of ten. After confirming the formula's correctness, the user acknowledges a simple calculation error. The thread emphasizes the importance of careful numerical substitution in physics calculations.
Meow12
Messages
46
Reaction score
20
Homework Statement
A thin insulating rod with charge density ##\lambda=\rm+5\ nC/m## is arranged inside a thin conducting cylindrical shell of radius ##R=\rm 3\ cm##. The rod and shell are on the same axis, and you can assume they are both infinite in length. What is the SURFACE charge density ##\sigma## induced on the OUTSIDE of the conducting shell in ##\rm C/m^2##?
Relevant Equations
Statement of Gauss's Law: ##\displaystyle\oint\limits\vec{E}\cdot d\vec{A} = \frac{Q}{\epsilon_0}##
physics.png
My attempt:


The electric field in the interior of a conductor is ##0##.

By symmetry, the electric field is directed radially outward.

Take the Gaussian surface as the thin cylindrical shell of radius ##\rm 3\ cm## and length ##L##.

##\displaystyle\oint\limits\vec{E}\cdot d\vec{A} = \frac{Q}{\epsilon_0}##

Since ##E=0## everywhere, ##Q=0##

##\lambda L+\sigma\cdot 2\pi R L=0##

##\lambda+2\pi R\sigma=0##

##\displaystyle\sigma=\rm-\frac{\lambda}{2\pi R}##

Upon substituting the values, we get ##\rm\sigma=-2.6\times 10^{-7}\ C/m^2##

##\sigma_{outside}=\rm+2.6\times 10^{-7}\ C/m^2=\rm +260\ nC/m^2##

But the correct answer is ##\rm +26\ nC/m^2##. I'm off by a factor of ##10##; where have I gone wrong?
 
Last edited:
Physics news on Phys.org
Welcome to PF!

Meow12 said:
##\displaystyle\sigma=\rm-\frac{\lambda}{2\pi R}##

Upon substituting the values, we get ##\rm\sigma=-2.6\times 10^{-7}\ C/m^2##
Your formula is correct. When I substitute the values, I get a result that is about 1/10 of your value. Check your work. If you still aren't getting the correct value, show the numerical values that you used in the formula.
 
  • Like
  • Informative
Likes Meow12 and berkeman
TSny said:
Welcome to PF!Your formula is correct. When I substitute the values, I get a result that is about 1/10 of your value. Check your work. If you still aren't getting the correct value, show the numerical values that you used in the formula.
Yeah, I had made a silly calculation mistake. Thanks for your post.
 
  • Like
Likes berkeman and TSny
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
12
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K