Using Gauss' law to find the induced surface charge density ##\sigma##

Meow12
Messages
46
Reaction score
20
Homework Statement
A thin insulating rod with charge density ##\lambda=\rm+5\ nC/m## is arranged inside a thin conducting cylindrical shell of radius ##R=\rm 3\ cm##. The rod and shell are on the same axis, and you can assume they are both infinite in length. What is the SURFACE charge density ##\sigma## induced on the OUTSIDE of the conducting shell in ##\rm C/m^2##?
Relevant Equations
Statement of Gauss's Law: ##\displaystyle\oint\limits\vec{E}\cdot d\vec{A} = \frac{Q}{\epsilon_0}##
physics.png
My attempt:


The electric field in the interior of a conductor is ##0##.

By symmetry, the electric field is directed radially outward.

Take the Gaussian surface as the thin cylindrical shell of radius ##\rm 3\ cm## and length ##L##.

##\displaystyle\oint\limits\vec{E}\cdot d\vec{A} = \frac{Q}{\epsilon_0}##

Since ##E=0## everywhere, ##Q=0##

##\lambda L+\sigma\cdot 2\pi R L=0##

##\lambda+2\pi R\sigma=0##

##\displaystyle\sigma=\rm-\frac{\lambda}{2\pi R}##

Upon substituting the values, we get ##\rm\sigma=-2.6\times 10^{-7}\ C/m^2##

##\sigma_{outside}=\rm+2.6\times 10^{-7}\ C/m^2=\rm +260\ nC/m^2##

But the correct answer is ##\rm +26\ nC/m^2##. I'm off by a factor of ##10##; where have I gone wrong?
 
Last edited:
Physics news on Phys.org
Welcome to PF!

Meow12 said:
##\displaystyle\sigma=\rm-\frac{\lambda}{2\pi R}##

Upon substituting the values, we get ##\rm\sigma=-2.6\times 10^{-7}\ C/m^2##
Your formula is correct. When I substitute the values, I get a result that is about 1/10 of your value. Check your work. If you still aren't getting the correct value, show the numerical values that you used in the formula.
 
  • Like
  • Informative
Likes Meow12 and berkeman
TSny said:
Welcome to PF!Your formula is correct. When I substitute the values, I get a result that is about 1/10 of your value. Check your work. If you still aren't getting the correct value, show the numerical values that you used in the formula.
Yeah, I had made a silly calculation mistake. Thanks for your post.
 
  • Like
Likes berkeman and TSny
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top