B Using Interference Principles to Increase the Efficiency of Solar Panels

DUOScoins
Messages
1
Reaction score
0
The use of interference principles in quantum mechanics to convert solar energy into electrical energy can be represented through the concept of quantum dots, or nanoparticles, which have properties that contribute to enhancing the absorption of light and generating the photoelectric effect.

Let's use the quantum dot model to describe the absorption of light and the generation of the photoelectric effect. Suppose a quantum dot has a bandgap with a width of E_g. When a photon with an energy of E_photon is absorbed, the electron can be excited from the valence band into the conduction band.

Let N_photon be the number of photons falling on a quantum dot over a certain period of time.
Let P_abs be the probability that a photon will be absorbed by a quantum dot.
Let G be the photocurrent generation coefficient, which determines the rate of electric current generation.

Then the efficiency of converting solar energy into electrical energy can be represented by the following mathematical formula:
Efficacy =Pabs⋅G⋅Nphoton

The probability of a photon being absorbed by a quantum dot (P_abs) depends on the spectral density of solar energy radiation (Spectrum) and the extinction coefficient, which describes how efficiently a material absorbs light of a certain wavelength:

Pabs=Extinction Coefficient×Spectrum
Gene coefficient
Photocurrent (G) determines the rate at which an electric current is generated and can be related to the intensity of light and the quantum efficiency of the conversion:
G=η×I
Where η is quantum efficiency (the efficiency of converting absorbed photons into generated electrons), and
I I is the intensity of light.

The number of photons falling on a quantum dot in a given time (N_photon) can be expressed in terms of a flux of photons:
Nphoton=Φ×A×t
Where f is the flux of photons (the number of photons incident per unit area per unit time),
a is the area of the quantum dot,
T is the time.

Thus, the efficiency of converting solar energy into electrical energy can be described by the equation:
Efficiency =Pabs×G×Nphoton
or
Efficiency = Extinction coefficient×Spectrum×η×I×Φ×A×t
 
Last edited by a moderator:
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top