Using inverses to solve systems of equations

AI Thread Summary
The discussion centers on the use of the identity matrix in solving systems of equations. Participants clarify that the equation X = IX arises from the properties of matrix multiplication, where multiplying a vector by the identity matrix yields the same vector. The identity matrix, denoted as I, is fundamental in matrix operations, similar to how multiplying a number by one retains its value. The associativity of matrix multiplication is also highlighted, demonstrating how A^-1A = I plays a role in simplifying expressions. Understanding these concepts is crucial for effectively solving systems of equations using inverses.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1682305758972.png

Can someone please tell me where they got ##X = IX## from?

Many thanks!
 
Physics news on Phys.org
From the definition of ##I##. It is the one in matrix multiplication.
$$
\begin{pmatrix}x_{11}&\ldots &x_{1n}\\ \vdots&&\vdots \\x_{n1}&\ldots &x_{nn}\end{pmatrix} \cdot \underbrace{\begin{pmatrix}1&0&\ldots&0&0\\ 0&1&\ldots&0&0 \\ \vdots&\vdots&\ddots&\vdots&\vdots \\
0&0&\ldots&0&1 \end{pmatrix}}_{=I}=\begin{pmatrix}x_{11}&\ldots &x_{1n}\\ \vdots&&\vdots \\x_{n1}&\ldots &x_{nn}\end{pmatrix}
$$

Then they used ##A^{-1} A= I## and the associativity law: ##(I\cdot X)=((A^{-1}A)X)=(A^{-1}(AX))=A^{-1}B.##
 
  • Like
Likes Grelbr42, YouAreAwesome, MatinSAR and 1 other person
fresh_42 said:
From the definition of ##I##. It is the one in matrix multiplication.
$$
\begin{pmatrix}x_{11}&\ldots &x_{1n}\\ \vdots&&\vdots \\x_{n1}&\ldots &x_{nn}\end{pmatrix} \cdot \underbrace{\begin{pmatrix}1&0&\ldots&0&0\\ 0&1&\ldots&0&0 \\ \vdots&\vdots&\ddots&\vdots&\vdots \\
0&0&\ldots&0&1 \end{pmatrix}}_{=I}=\begin{pmatrix}x_{11}&\ldots &x_{1n}\\ \vdots&&\vdots \\x_{n1}&\ldots &x_{nn}\end{pmatrix}
$$

Then they used ##A^{-1} A= I## and the associativity law: ##(I\cdot X)=((A^{-1}A)X)=(A^{-1}(AX))=A^{-1}B.##
Thank you for your help @fresh_42! I see now.
 
  • Like
Likes YouAreAwesome
ChiralSuperfields said:
Can someone please tell me where they got ##X = IX## from?
This should be obvious. Based on the initial post, X is a column vector. If X consists of n elements, multiplication of X by an n x n identity matrix ##I_n## produces exactly the same vector X. This is analogous to writing ##b = 1 \cdot b## for ordinary numbers.
 
  • Like
Likes member 731016
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this,
View attachment 325404
Can someone please tell me where they got ##X = IX## from?

Many thanks!
The ##I## should trigger the phrase "##I##dentity Matrix". It was the reason ##I## was chosen rather than some other letter in the first place.
 
  • Like
Likes fresh_42 and member 731016
Back
Top