Using Kepler's 3rd Law to find Period of Venus

Click For Summary
SUMMARY

The discussion focuses on applying Kepler's 3rd Law to determine the orbital period of Venus based on its distance from the Sun. The key equations utilized include a = (4π²r)/T² and a = GM/r², leading to the derived formula T = k r^(3/2), where n is established as 3/2. By using the ratio of the distances of Venus and Earth, the period of Venus can be calculated without needing absolute distance values.

PREREQUISITES
  • Understanding of Kepler's Laws of planetary motion
  • Familiarity with gravitational equations, specifically a = GM/r²
  • Basic algebraic manipulation of equations
  • Knowledge of ratios and proportional relationships in physics
NEXT STEPS
  • Explore the derivation of Kepler's 3rd Law in detail
  • Study gravitational constant G and its applications in celestial mechanics
  • Learn about the significance of orbital periods in astronomy
  • Investigate the calculation of orbital distances and their implications
USEFUL FOR

Astronomy students, physics enthusiasts, and educators looking to deepen their understanding of planetary motion and gravitational dynamics.

Rajveer97
Messages
6
Reaction score
0

Homework Statement


Deduce, from the equations employed in Q4 and Q5, the exponent n in the equation: T = k rn where k is a constant and T is the period of a satellite which orbits at a radius r from a massive object in space. Hence, how long is the “year” on Venus if its distance from the Sun is 72.4% of the Earth’s?

Homework Equations


The equations I used in the previous equations were simply a = (4(pi^2)r)/T^2 and a = GM/r^2 and basically combinations of the two

The Attempt at a Solution


So I started this question by trying to find the distance of the Earth from the Sun using T^2 = (4pi^2)/Gm (m being mass of the Sun) to which I got the answer 2.75x10^11 km

Then I substituted the r in the Kepler's equation with 0.724Re (to find distance of Venus from the Sun) but my answers seemed to have all been wrong so either I'm making some silly arithmetical error or my entire approach is wrong. Any help and hints would be appreciated, thank you :)
 
Physics news on Phys.org
Rejverr97:

The question asks you to write an equation of the form ##T=k r^n##, using the equations you had previously. That is, you need to combine those equations algebraically to express the period ##T## in terms of the distance ##r##. In the process, you'll find the exponent ##n## as well as the constant ##k## in terms of the constants in your previous equations.

Once you have that expression, you can work with ratios of the ##T## and ##r## values. If you do that, you should not need to work out intermediate values like the actual distance of Earth from the Sun in metres.

Does that help?
 
James R said:
Rejverr97:

The question asks you to write an equation of the form ##T=k r^n##, using the equations you had previously. That is, you need to combine those equations algebraically to express the period ##T## in terms of the distance ##r##. In the process, you'll find the exponent ##n## as well as the constant ##k## in terms of the constants in your previous equations.

Once you have that expression, you can work with ratios of the ##T## and ##r## values. If you do that, you should not need to work out intermediate values like the actual distance of Earth from the Sun in metres.

Does that help?

I should have mentioned, I did do that first step which gave me T = (2pi/root Gm) x r^3/2 . So the value I got for n was 3/2. Could you elaborate a bit more on what you mean later by working out the ratios of the T and r values? Because currently I can't think in my head how to do this without needing the distance of Earth from the Sun.
 
Rajveer97 said:
I should have mentioned, I did do that first step which gave me T = (2pi/root Gm) x r^3/2 . So the value I got for n was 3/2. Could you elaborate a bit more on what you mean later by working out the ratios of the T and r values? Because currently I can't think in my head how to do this without needing the distance of Earth from the Sun.
You don't need the absolute distance of either planet from the Sun. You are given the ratio of the two radii, and you are asked for Venus' "year" as measured in Earth years, i.e. you are asked for the ratio of the two years.
Combine that with the formula you obtained in the first part of the question, T=kr3/2.
 
Rajveer97 said:
I should have mentioned, I did do that first step which gave me T = (2pi/root Gm) x r^3/2 . So the value I got for n was 3/2. Could you elaborate a bit more on what you mean later by working out the ratios of the T and r values? Because currently I can't think in my head how to do this without needing the distance of Earth from the Sun.
Ok. So, you have
$$T_{Earth}=\frac{2\pi}{\sqrt{Gm}}r_{Earth}^{3/2},~~T_{Venus}=\frac{2\pi}{\sqrt{Gm}}r_{Venus}^{3/2}$$
Two equations. You know ##r_{Venus}/r_{Earth}=0.724## and ##T_{Earth}=1## year. Can you use the two equations to find ##T_{Venus}##?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K