Using Lagrangian to show a particle has a circular orbit

Click For Summary
The discussion revolves around using the Lagrangian to demonstrate that a particle can maintain a circular orbit. The Lagrangian is established as L = (1/2)m(ṙ² + r²θ̇² + ṷ²) - er²g(z)θ̇, leading to conserved quantities such as the Hamiltonian and generalized momentum for θ. The proposed solution assumes a circular path with constant r and z, while θ evolves linearly over time, satisfying the equations of motion derived from the Lagrangian. A critical point raised is the condition g'(z) = 0, which is necessary for the orbit's stability under shifts in the z-axis, suggesting that small perturbations around z₀ lead to simple harmonic motion if g''(z₀) > 0. The discussion concludes with a confirmation that the approach and reasoning appear sound.
gromit
Messages
3
Reaction score
1
Homework Statement
The motion of an electron of mass m and charge (-e) moving in a magnetic
field: ##B = \nabla \times A(r)## is described by the Lagrangian
##L = \frac{1}{2}mv^2 - ev \cdot A(r)##

Working in cylindrical polar coordinates, consider the vector potential:
##A = (0, rg(z), 0)##
where ##g(z) > 0##:
1.) Obtain two constants of motion
2.) Show that if the electron is projected from a point ##(r_0, θ_0, z_0)## with velocity ##\dot{r} = \dot{z} = 0## and ##\dot{θ} = \frac{2eg(z_0)}{m}##, then it will describe a circular orbit provided that ##g'(z_0) = 0##
3.) Show that these orbits are stable to shifts along the z axis if ##tg′′ > 0##
Relevant Equations
##L = \frac{1}{2}mv^2 - ev \cdot A(r)##
##A = (0, rg(z), 0)##
Hi :) This is a problem from David Tong's Classical Dynamics course, found here: http://www.damtp.cam.ac.uk/user/tong/dynamics.html. In particular it is problem 6ii in the first problem sheet.

Firstly we can see the lagrangian is ##L = \frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2+\dot{z}^2) - er^2g(z)\dot{\theta}##. From this it has symmetry in time and ##\theta## so the hamiltonian and generalised momentum for ##\theta## must be conserved. I found these to be:
$$H = \frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}+\dot{z}^2)$$
$$p_{\theta} = mr^2\dot{\theta} - er^2g(z)$$
So these will be the two constants of motion. The next part is where I get a little shaky. I assume that you could consider the circle:
$$r(t) = r_0$$
$$\theta(t) = \frac{2eg(z_0)}{m}t + \theta_0$$
$$z(t) = z_0$$
And show that this satisfies the equations of motion derived from the Lagrangian (as well as the given boundary conditions). Namely:
$$m\ddot{r}+2erg(z)\dot{\theta} - mr^2\dot{\theta} = 0$$
$$(mr^2\dot{\theta} - er^2g(z))' = 0$$
$$m\ddot{z} + er^2g'(z)\dot{\theta} = 0$$
Then this part is solved (please correct me if I'm wrong). Substitution does show that the described solutions works for the first two, and it must be assumed that ##g'(z) = 0## for the last equation of motion to be satisfied. On a side note, if this is a valid method, could I just use the constants of motion instead and that would still be sufficient?

The final part is where I am completely stuck. It seems to me that the trajectory remaining a circular orbit for a shift in the z-axis relies on ##g'(z) = 0##, but the inequality provided does not guarantee this for an arbitrary shift?

Thank you so much for your help :)
 
Physics news on Phys.org
I wonder what is meant here by "stable under shifts along the z axis"? I'm sure it cannot be, say, a change in the initial conditions ##z_0 \mapsto z_0 + \alpha##, because ##z_0## is already arbitrary making the statement obvious.

So is he talking about making a small pertubation ##z = z_0 + \xi##, and then showing that ##\xi## oscillates simple harmonically provided the condition is satisfied?
 
ergospherical said:
I wonder what is meant here by "stable under shifts along the z axis"? I'm sure it cannot be, say, a change in the initial conditions ##z_0 \mapsto z_0 + \alpha##, because ##z_0## is already arbitrary making the statement obvious.

So is he talking about making a small pertubation ##z = z_0 + \xi##, and then showing that ##\xi## oscillates simple harmonically provided the condition is satisfied?
That makes much more sense, thank you!
 
As a hint, you could substitute ##z = z_0 + \xi## into the equation of motion ##m\ddot{z} + er^2g'(z)\dot{\theta} = 0## for ##z## and then Taylor expand ##g(z_0 + \xi)## to first order in ##\xi##. If ##g''(z_0) > 0## then the resulting equation of motion for ##\xi## is one of SHM with an equilibrium position displaced from the origin, and a substitution allows you to calculate ##\xi##. This is assuming that we can take ##\dot{\theta}## to be approximately constant in the perturbed case.

Again I'm not sure if that's correct, but it seems reasonable...?
 
Last edited by a moderator:
ergospherical said:
As a hint, you could substitute ##z = z_0 + \xi## into the equation of motion ##m\ddot{z} + er^2g'(z)\dot{\theta} = 0## for ##z## and then Taylor expand ##g(z_0 + \xi)## to first order in ##\xi##. If ##g''(z_0) > 0## then the resulting equation of motion is one of SHM with an equilibrium position displaced from the origin, and a substitution allows you to calculate ##\xi##. This is assuming that we can take ##\dot{\theta}## to be approximately constant in the perturbed case.

Again I'm not sure if that's correct, but it seems reasonable...?
I just went through this roughly by hand, and it seems to answer it perfectly. Thanks again!
 
Last edited by a moderator:
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 10 ·
Replies
10
Views
6K
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
9K
  • · Replies 9 ·
Replies
9
Views
3K