lmstaples
- 31
- 0
Homework Statement
Use the Ratio Test for series to determine whether each of the following series converge or diverge. Make Reasoning Clear.
(a) \sum^{∞}_{n=1}\frac{3^{n}}{n^{n}}
(b) \sum^{∞}_{n=1}\frac{n!}{n^{\frac{n}{2}}}
Homework Equations
if\:lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}}) < 1 \Rightarrow\sum^{∞}_{n=1}\:-\:converges
if\:lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}})\in[0,1)\Rightarrow \sum^{∞}_{n=1}\:-\:diverges
0\leq \sum^{∞}_{n=1}(a_n)\leq \sum^{∞}_{n=1}(b_n)
\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\vdots
if\:\sum^{∞}_{n=1}(a_n)\:-\:diverges\:\Rightarrow\:\sum^{∞}_{n=1}(b_n)\:-\:diverges
if\:\sum^{∞}_{n=1}(b_n)\:-\:converges\:\Rightarrow\:\sum^{∞}_{n=1}(a_n)\:-\:converges
The Attempt at a Solution
(a) I let a_{n} = sequence of partial sums then plugged everything into ratio test formula.
I ended up with:
lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}})\:=\:3lim_{n\rightarrow∞}(\frac{n^{n}}{(n+1)(n+1)^{n}})
I know that the limit equals 0 hence the series converges but not quite sure how to show that the limit cancels down to show 0 is "obvious"
Any help would be great, thanks.
(b) I let a_{n} = sequence of partial sums then plugged everything into ratio test formula.
I ended up with:
lim_{n\rightarrow∞}(\frac{a_{n+1}}{a_{n}})\:=\:lim_{n\rightarrow∞}(\frac{n(\frac{n}{n+1})^{\frac{n}{2}}}{\sqrt{n+1}})\:+\:lim_{n\rightarrow∞}(\frac{(n)^{\frac{n}{2}}}{(n+1)^{\frac{n}{2}}\sqrt{n+1}})
I know that:
lim_{n\rightarrow∞}(\frac{n(\frac{n}{n+1})^{\frac{n}{2}}}{\sqrt{n+1}})\:=\:∞
And that:
lim_{n\rightarrow∞}(\frac{(n)^{\frac{n}{2}}}{(n+1)^{\frac{n}{2}}\sqrt{n+1}})\:=\:0
Hence the overall limit = ∞ and so the series diverges; but, once again I'm not quite sure how to show that how the limits cancels down to show ∞ and 0 is "obvious"
Once again, any help would be great, thanks.