(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Calculate the exact value of the sum from minus infinity to infinity of C_{k}.

2. Relevant equations

C_{k}= [itex]\frac{672}{κ^{2}π^{2}}[/itex]([itex]e^{-iκ\frac{π}{2}}[/itex][itex]-[/itex][itex]e^{-iκπ}[/itex])[itex]-[/itex]2744([itex]\frac{e^{-iκ\frac{π}{14}}}{iκπ}[/itex][itex]+[/itex][itex]\frac{e^{iκ\frac{π}{14}}}{κ^{2}π^{2}}[/itex][itex]-[/itex][itex]\frac{14e^{-iκ\frac{π}{14}}}{iκ^{3}π^{3}}[/itex][itex]+[/itex][itex]\frac{14e^{ik\frac{π}{14}}}{iκ^{3}π^{3}}[/itex])[itex]+[/itex][itex]\frac{392}{κ^{2}π^{2}}[/itex]([itex]e^{iκ\frac{π}{14}}[/itex][itex]-[/itex][itex]e^{iκ\frac{π}{2}}[/itex][itex]-[/itex][itex]e^{-iκ\frac{π}{14}}[/itex][itex]+[/itex][itex]e^{-iκ\frac{π}{2}}[/itex])

3. The attempt at a solution

I'm not good with sums, I really have no idea how to get started.

(it's somewhat urgent, I'm supposed to solve it until tomorrow)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Value of the infinite sum of fourier coefficients?

**Physics Forums | Science Articles, Homework Help, Discussion**