Variational calculus Euler lagrange Equation

Click For Summary
The discussion centers on understanding a derivation in the Euler-Lagrange equation from variational calculus, specifically the appearance of the factor of 1/2 in the integral transformation. The original poster is confused about how this factor emerges during the integration process. A participant clarifies that by performing calculations without the variation symbol, the derivation becomes clearer, highlighting the relationship between functional derivatives and standard calculus operations. They explain that the differentiation of functions shares common properties, such as the relationship xdx = 1/2 d(x^2). This insight helps demystify the derivation and reinforces the connection between calculus and variational principles.
hash054
Messages
6
Reaction score
0
I am trying to understand an example from my textbook "applied finite element analysis" and in the variational calculus, Euler lagrange equation example I can't seem to understand the following derivation in one of its examples
∫((dT/dx)(d(δT)/dx))dx= ∫((dT/dx)δ(dT/dx))dx= ∫((1/2)δ(dT/dx)^2)dx

limits from 0 to 5.

My question here is how in the last part of the derivation 1/2 appears out of the blue where the integratal remains intact..
If anyone know the answer.. kindly refer me some examples also
 
Physics news on Phys.org
essentially it is a restatement of: xdx = 1/2 d(x^2)
 
So this is a reverse step?
 
Hi All,
I found it easier to master the functional derivative concept by performing the calculations out, leaving aside for a moment the symbol $$\delta$$ to denote variations, a useful notation that might though hide the mechanics of what is going on.
Then your example becomes transparent: the functional derivative of the functional $$\int_{\Omega} y'^{2} \mathrm{d}\Omega$$ in the direction of the test function $$\mu$$ (in other terms, introducing a variation $$\hat{y} = y(x) + \epsilon \mu (x)$$ according to the definition equals
$$lim_{\epsilon \to 0}\frac {\int_{\Omega} [\hat{y}'^2 - y'^ 2] \mathrm{d}\Omega}{\epsilon}$$
$$lim_{\epsilon \to 0}\frac {\int_{\Omega} [{y'^{2} + 2\epsilon \mu' y'+\epsilon^2 \mu^{2}} - y' ^2] \mathrm{d}\Omega}{\epsilon}$$
some terms cancel, and you are left with the result you wnated to confirm: it turns out the differentiation of functions and functional share common operational properties, such as xdx = 1/2 d(x^2).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
794
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K