A Variational derivative and Euler-Poincare equations

Hi,

I'm trying to understand the Euler-Poincare equations, which reduce the Euler-Lagrange equations for certain Lagrangians on a Lie group. I'm reading Darryl Holm's "Geometric mechanics and symmetry", where he suddenly uses what seems to be a variational derivative, which I'm having a hard time understanding. The Euler-Poincare reduction theorem (and equation) goes as follows:


upload_2019-2-19_21-5-6.png


It is the ##\frac{\delta l}{\delta \xi}## - derivative which I'm guessing is a variational derivative. It must be a covector, and in computations it seems to reduce to partial derivatives of ##l## wrt. ##\xi## (in suitable coordinates) - I have also seen other sources where the EP-equation is stated in terms of ##\frac{\partial l}{\partial \xi}## instead of the abovementioned.

He defines it in two different ways. The first definition is found in one of the later chapters of the book (and it seems to be in a more general setting):

upload_2019-2-19_21-10-26.png

And in another book ("Geometric mechanics - part 2") he defines it as:

upload_2019-2-19_20-53-28.png


My questions are:

- which definition should I focus on?
- Is the pairing in the latter definition the usual covector-vector pairing?

Any explanations, hints or references would be greatly appreciated! Thanks.

<mentor: fix latex>
 

Attachments

Last edited by a moderator:

fresh_42

Mentor
Insights Author
2018 Award
11,425
7,848
My questions are:

- which definition should I focus on?
##11.13## The other definition ##(2.1.1)## is basically just the definition of a derivative. The crucial point is what is variated, namely the direction ##v:=\delta q##, resp. ##v:=\delta u##.
You could also combine them and get both in one:
$$
\delta l[ u ]= \lim_{t \to 0}\dfrac{l[ u+t\delta u ] - l[ u ]}{t}=\left. \dfrac{d}{dt}\right|_{t=0}l[ u+t\delta u ]=\left\langle \dfrac{\delta l}{\delta u},\delta u \right\rangle = \int \dfrac{\delta l}{\delta u} \cdot \delta u \,dV
$$
- Is the pairing in the latter definition the usual covector-vector pairing?
Yes. It's the view of the derivative as a linear function, similar to the gradient in ##\mathbb{R}^n##: ##d l(u)(v)=\langle \nabla l(u) , v \rangle##, except that we do not take the total differential here but only the partial along ##\delta u##.
 
Thanks for your answer. I am still confused though :/
  • I don't understand the last equality; ##\langle \frac{\delta l}{\delta u} , \delta u \rangle = \int \frac{\delta l}{\delta u} \cdot \delta u \hspace{1mm} d V ##. I would think that ## \frac{\delta l}{\delta u} \cdot \delta u ## is the euclidean inner product representation of the evaluation ## \frac{\delta l}{\delta u}[\delta u] \in \mathbb{R}##, where ##\frac{\delta l}{\delta u}, \delta u## are euclidean vectors. But in that case the integral doesn't make sense, since ##\langle \frac{\delta l}{\delta u} , \delta u \rangle = \frac{\delta l}{\delta u} \cdot \delta u ## . So... why the need for the integral? I'm probably missing something fundamental.
  • Is it correct to say that if ##l## is an ordinary function of a vector ##u##, then ##\frac{\delta l}{\delta u} = \frac{\partial l}{\partial u} ##?
 

fresh_42

Mentor
Insights Author
2018 Award
11,425
7,848
Thanks for your answer. I am still confused though :/
  • I don't understand the last equality; ##\langle \frac{\delta l}{\delta u} , \delta u \rangle = \int \frac{\delta l}{\delta u} \cdot \delta u \hspace{1mm} d V ##. I would think that ## \frac{\delta l}{\delta u} \cdot \delta u ## is the euclidean inner product representation of the evaluation ## \frac{\delta l}{\delta u}[\delta u] \in \mathbb{R}##, where ##\frac{\delta l}{\delta u}, \delta u## are euclidean vectors. But in that case the integral doesn't make sense, since ##\langle \frac{\delta l}{\delta u} , \delta u \rangle = \frac{\delta l}{\delta u} \cdot \delta u ## . So... why the need for the integral? I'm probably missing something fundamental.
The integral comes from the definition of the inner product in ##L^2(I)\, : \,\langle f,g \rangle = \int_I f(x)g^*(x)dx## only that ##f,g## in our case aren't functions but differential forms, and ##I## not an interval but a vector field ##V##.
  • Is it correct to say that if ##l## is an ordinary function of a vector ##u##, then ##\frac{\delta l}{\delta u} = \frac{\partial l}{\partial u} ##?
Yes. However, partials are usually meant as coordinate directions, and ##u## doesn't have to be one.

The main difficulty, at least mine, is to distinguish the roles a derivative is playing in a certain context. I've made the fun and listed a couple (10) of them here: https://www.physicsforums.com/insights/journey-manifold-su2mathbbc-part/ but this has meant to be more as a hint on how easy it is to get confused rather than an explanation. Fun fact: slope wasn't even on the list.

My attempt to sort things out was this one: https://www.physicsforums.com/insights/pantheon-derivatives-part-ii/#toggle-id-0
If you look at the pdf, then it's probably better to read, resp. easier to search for keywords, e.g. Gâteaux or Noether as in our case here.
 
Thank you. The documents you link to looks very nice, I will see if they can make things clear to me.
 

Want to reply to this thread?

"Variational derivative and Euler-Poincare equations" You must log in or register to reply here.

Related Threads for: Variational derivative and Euler-Poincare equations

Replies
1
Views
741
Replies
2
Views
3K
  • Posted
Replies
7
Views
4K
  • Posted
Replies
1
Views
1K
  • Posted
Replies
2
Views
2K
  • Posted
Replies
8
Views
2K
  • Posted
Replies
3
Views
2K
Replies
1
Views
793

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top