Variational Principle and Vectorial Identities

Click For Summary
The discussion revolves around proving that the Euler-Lagrange equation derived from the principle of Minimum energy for an elastic body aligns with the Navier equations of elasticity. The principle states that the equilibrium state minimizes the integral of the symmetric gradient of displacement multiplied by a constant tensor. The user attempts to compute the Euler-Lagrange equation for the functional involving the symmetric gradient but struggles to obtain the term related to the divergence of displacement. They successfully derive a Laplacian term but need assistance in incorporating the divergence term into their proof. Clarification on the computation of the Euler-Lagrange equation is requested to resolve these issues.
muzialis
Messages
156
Reaction score
1
Hello there,

I am struggling in proving the following.
The principle of Minimum energy for an elastic body (no body forces, no applied tractions) says that the equilibrium state minimizes
$$\int_{\Omega} \nabla^{(s)} u D (\nabla^{(s)}u)$$
among all vectorial functions u satisfying the boundary conditions, where $$\nabla^{(s)} = \frac{1}{2} (u_{i,j}+u_{j,i})$$ and D is a constant tensor $$D_{ijkl}$$
The principle is expressed in terms of displacements, so one would expect that its Euler Lagrange Equation coinciides with the equlibrium equation of elasticity expressed in terms of displacements, the Navier equations, $$A \nabla (\nabla \cdot u) + B \nabla^{2} u = 0$$, A e B constants.
How to prove that? I am quite shaky in dimensions higher than 1.
I tried writing the first variation, after introducing $$u_{var} = U + \epsilon u$$ as
$$\int_{\Omega} \nabla^{(s)} u D (\nabla^{(s)}U)$$
and now by integration by parts I recover a Laplacian, as in Navier's equation (second term), but not the term $$\nabla (\nabla \cdot u)$$, any help would be so appreciated, thanks
 
Physics news on Phys.org
Let me rephrase the question, to make it clearer.
How to compute the Euler Lagrange equation of the functional
$$\int_{\Omega} \nabla^{(s)} u D (\nabla^{(s)}u)$$
where u is a vectorial function, $$\nabla^{(s)}u = \frac{1}{2} (u_{i,j}+u_{j,i})$$ and D is a (symmetric) constant tensor $$D_{ijkl}$$?
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K