Understanding the Chain Rule in Vector Calculus for Gradient of Scalar Functions

Click For Summary
The discussion focuses on the application of the chain rule in vector calculus for computing the gradient of a scalar function f(A), where A is a vector. Participants clarify the mathematical expressions involved, particularly how to express the gradient of f in terms of the components of A. A preferred notation for the chain rule is introduced, emphasizing the use of partial differentiation without explicit summation symbols. The conversation also touches on the representation of the gradient in spherical coordinates and the relationship between the gradients of f and A. The overall aim is to enhance understanding of the chain rule's application in this context.
daudaudaudau
Messages
297
Reaction score
0
Hi. I was looking for a chain rule in vector calculus for taking the gradient of a function such as f(A), where A is a vector and f is a scalar function. I found the following expression on wikipedia, but I don't understand it. It's taking the gradient of f, and applying that to A, and then writing nabla A ?? Can anyone tell me what's going on?

fcd0ce7679df0e7387af5f353182e420.png
 
Physics news on Phys.org
Consider ##A = [a(x,y,z) \hat x + b(x,y,z) \hat y + c(x,y,z) \hat z ],## and ##f(A) = f(a,b,c),##
then ##\nabla f(A) = \hat x \frac{\partial f}{\partial x}\left[\frac{\partial a}{\partial x}+\frac{\partial b}{\partial x}+\frac{\partial c}{\partial x} \right] +
\hat y\frac{\partial f}{\partial y}\left[\frac{\partial a}{\partial y}+\frac{\partial b}{\partial y}+\frac{\partial c}{\partial y} \right]+
\hat z \frac{\partial f}{\partial z}\left[\frac{\partial a}{\partial z}+\frac{\partial b}{\partial z}+\frac{\partial c}{\partial z} \right]##
##\nabla f = \hat x \frac{\partial f}{\partial x}+ \hat y \frac{\partial f}{\partial y}+ \hat z \frac{\partial f}{\partial z}##
Also, ## \nabla A = \pmatrix{\frac{\partial a}{\partial x} &\frac{\partial b}{\partial x} & \frac{\partial c}{\partial x}\\
\frac{\partial a}{\partial y} &\frac{\partial b}{\partial y} & \frac{\partial c}{\partial y} \\
\frac{\partial a}{\partial z} &\frac{\partial b}{\partial z} & \frac{\partial c}{\partial z}}##
So if you carry out the matrix math and rearrange the terms,
fcd0ce7679df0e7387af5f353182e420.png

You will see that the equation is true.
 
Thanks. How would that look in spherical coordinates ?
 
I'm just going to answer the first question in a different notation. I like this version of the chain rule: ##(f\circ g)_{,i}(x) =f_{,j}(g(x)) g^j{}_{,i}(x)##. Here ##_{,i}## denotes partial differentiation with respect to the ##i##th variable, and ##g^i## denotes the real-valued function that takes ##x## to the ##i##th component of ##g(x)##. I'm using the convention to not write any summation sigmas, since the sum is always over the index that appears twice. For example, if I write ##X^i_k Y^k_j##, it means ##\sum_{k=1}^n X^i_k Y^k_j##.

Note that the ##i##th component of ##\nabla(f\circ A)(x)## is ##(f\circ A)_{,i}(x)##.
$$(f\circ A)_{,i}(x)= f_{,j}(A(x))A^j{}_{,i}(x) =\nabla f(A(x))\cdot A_{,i}(x) =(\nabla f\circ A)(x)\cdot A_{,i}(x).$$ I suppose we could also write this as
$$\nabla(f\circ A)(x) =(\nabla f\circ A)(x)\cdot\nabla A(x),$$ but I don't see why we'd want to.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K