MHB Vector Manipulation: Writing Cross Prod.

Click For Summary
The discussion centers on whether the expression \(\lvert\dot{\mathbf{r}}\rvert\lvert\ddot{\mathbf{r}} - \dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}\rvert\) can be rewritten as \(\lvert\dot{\mathbf{r}}\rvert\lvert\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\rvert\). It is clarified that the original expression is invalid due to the mixing of vector and scalar quantities. To prove the identity, examining the angle between vectors is suggested, utilizing cross product properties. The key point is to demonstrate that \(\dot{\mathbf{r}}\) and \(\dot{\mathbf{r}} \times \ddot{\mathbf{r}}\) are orthogonal, which would validate the transformation. This approach focuses on the geometric relationships of the vectors involved.
Dustinsfl
Messages
2,217
Reaction score
5
Is it possible to write \(\lvert\dot{\mathbf{r}}\rvert\lvert\ddot{\mathbf{r}} - \dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}\rvert\) as \(\lvert\dot{\mathbf{r}}\rvert\lvert\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\rvert\)?

I want to show
$$
\lvert\left(\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\right) \times
\dot{\mathbf{r}}\rvert = \lvert\dot{\mathbf{r}}\rvert
\lvert\dot{\mathbf{r}}
\times\ddot{\mathbf{r}}\rvert
$$
 
Physics news on Phys.org
The first expression, as it stands, doesn't make sense. You cannot add $\ddot{\mathbf{r}}$ to $-\dot{\mathbf{r}}\cdot \ddot{\mathbf{r}}$, as the first is a vector and the second is a scalar. To show your identity, I'd try to look at the angle between certain vectors. That is, you know by the cross product rules that
$$ \left|( \dot{ \mathbf{r}} \times \ddot{ \mathbf{r}}) \times \dot{ \mathbf{r}} \right|
= \left| \dot{ \mathbf{r}} \right| \, \left| \dot{ \mathbf{r}} \times \ddot{ \mathbf{r}} \right| \sin(\theta),$$
where $\theta$ is the angle between $\dot{\mathbf{r}}$ and $\dot{\mathbf{r}} \times \ddot{ \mathbf{r}}$. If you can show that $\dot{\mathbf{r}}$ and $\dot{\mathbf{r}} \times \ddot{\mathbf{r}}$ are orthogonal, you'd be done, right?
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
472