Vector space and 3D flow field

Leo Liu
Messages
353
Reaction score
156
Homework Statement
.
Relevant Equations
.
1626483157058.png

Could someone explain the green highlight to me, please?
 
Physics news on Phys.org
The sum emits light of constant speed c with constant power. The emitted photons becomes more sparse at distant places as ##r^{-2}## so the sun is observed more dimmer.
 
anuttarasammyak said:
The sum emits light of constant speed c with constant power. The emitted photons becomes more sparse at distant places as ##r^{-2}## so the sun is observed more dimmer.
Thanks for providing some physical intuition. But is it because the surface density of a mass flow is
$$\frac{\dot m}{A}=\frac{\dot m}{4\pi r^2}$$
?
 
Yes. What's wrong with it ?
 
anuttarasammyak said:
Yes. What's wrong with it ?
Nothing. Just making sure I understand where this proportionality comes from.
 
Another perspective: imagine two concentric spherical surfaces of radii ##\rho_1## and ##\rho_2## (##\rho_2 > \rho_1##) which bound a region ##R##. In steady state the mass contained in ##R## is constant, so the mass fluxes into the inner surface and out of the outer surface are equal: ##4\pi {\rho_1}^2 \delta_1 v = 4\pi {\rho_2}^2 \delta_2 v \, \implies \, \delta \rho^2 = \mathrm{constant}##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top