Vector spaces, Spans and Matrix Determinants

Click For Summary
SUMMARY

This discussion clarifies the relationship between vector spans, linear independence, and matrix determinants. A span is defined as the set of all linear combinations of a given set of vectors. If the determinant of a matrix is non-zero, the vectors are linearly independent, meaning none can be expressed as a linear combination of the others. The discussion emphasizes that a non-zero determinant indicates that the rows or columns of the matrix span the entire space, confirming that invertibility, span, and non-zero determinant are interconnected concepts.

PREREQUISITES
  • Understanding of linear combinations in vector spaces
  • Knowledge of linear independence and its implications
  • Familiarity with matrix determinants and their properties
  • Concept of basis vectors and their role in spanning a space
NEXT STEPS
  • Study the properties of linear combinations in vector spaces
  • Learn about the implications of linear independence in R^n
  • Explore the relationship between matrix determinants and invertibility
  • Investigate the concept of full rank matrices and their significance
USEFUL FOR

Students of linear algebra, mathematicians, and anyone involved in vector space theory or matrix analysis will benefit from this discussion.

ND3G
Messages
79
Reaction score
0
I think I have something mixed up so if someone can please point out my error.

1. the set of all linear combinations is called a span.

2. If a family of vectors is linearly independent none of them can be written as a linear combination of finitely many other vectors in the collection.

3. If the determinant of a matrix is not equal to zero the vectors are linearly independent.

Therefore, if the determinant of the matrix does not equal zero the vectors can not be written as a linear combination, hence there is no span.
 
Last edited:
Physics news on Phys.org
The only problem I see here is that a "span" is something that applies to a set of vectors, or a space. Then all of a sudden you're talking about matrices. It does not make sense in any way I can think of to talk about the "span" of a matrix-- the words are just not meaningful.

Now maybe the idea is, you want to take the basis set of vectors for some space, and create a matrix whose columns consist of those basis vectors. If this is the case then yes, the determinant would be nonzero (this is actually one way of testing whether a set of vectors form a basis), and yes, it will not be possible to represent any of the basis vectors as a linear combination of the others (since this is part of what a basis means). The span of the basis vectors meanwhile will be the entire space.
 
ND3G said:
1. the set of all linear combinations is called a span.

As Coin pointed out, the term "span" applies to a set of vectors, so you'll have to be a bit more precise. So, you could say that the set of all linear combinations of a set of vectors forms the span of that very set (or linear shell, as I have been tought).
 
Ok, to clear things up a little

Given vectors X1, X2..., X3 in R^n, a vector in the form X = t1 X1 + t2 X2 + ... tk Xk

1. the set of such linear combinations is called a span of the Xi and denoted by span{X1, X2, ...Xk}

2. If a family of vectors is linearly independent none of them can be written as a linear combination of finitely many other vectors in the collection.

3. If the determinant of a matrix is not equal to zero the vectors are linearly independent.

Therefore, if the determinant of the matrix does not equal zero the vectors can not be written as a linear combination, hence there is no span.

Now my text gives me a solution where a matrix whose columns consist of basis vectors has a determinant of -42. It also states that the vectors span R^4.

Now, if the non zero determinant means that no linear combination can be written, and with no linear combination there is no span as it is a combination of the linear combinations. So, either the vectors span R^4 or the determinant is non-zero. I can't see how it can be both.

The vectors are: {[1 3 -1 0]T, [-2 1 0 0]T, [0 2 1 -1]T, [3 6 -3 -2]T}
 
NF3G said:
Now, if the non zero determinant means that no linear combination can be written
No, "non zero determinant" means that none of the vectors in the set can be written as a linear combination of the others. It surely does not mean "no linear combination can be written". A linear combination of a set of vectors is just a sum of numbers times those vectors. That can always be done.
 
Yeah, I am starting to see that.

I also found another theorem which counters what I posted before.

An nxn matrix is invertible if and only if
1) the rows are linearly independent (otherwise det = 0)*
2) the columns are linearly independent (otherwise det = 0)*
3) rows of A span R^n

So in order for the rows of A to span R^n the det must be non-zero, not the other way around.

*a matrix is not invertible if the determinant = 0*
 
Last edited:
ND3G said:
So in order for the rows of A to span R^n the det must be non-zero, not the other way around.

It works both ways: if det(A) is non-zero, then the rows (or columns) of A span R^n. And, conversely, if the rows (or columns) of A span R^n, then det(A) is non-zero.

ND3G said:
*a matrix is not invertible if the determinant = 0*

Right, and that one goes both ways as well: if det(A) = 0, A is not invertible.

All of which is to say that invertibility, the span covering the entire space, and non-zero determinant are all basically different ways of saying the same thing. Most people would use the expression "matrix A has full rank" to denote this property.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 0 ·
Replies
0
Views
8K