1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Vectorpotential as a function of (t- x/c)

  1. Sep 11, 2010 #1
    1. The problem statement, all variables and given/known data

    I am working through chapter 47 of the Landau Lifschitz. And there is the following argument:

    The vector potential is a function of [tex] t - \frac{x}{c} [/tex]
    From the defining equations for the electric and magnetic fields:
    [tex] \vec{E} = - \frac{1}{c} \frac{\partial \vec{A}}{\partial t}, \vec{B} = \nabla \times \vec{A} [/tex]
    [tex] \vec{E} = - \frac{1}{c} \vec{A'} [/tex]
    [tex] \vec{B} = \nabla \times \vec{A} = \nabla (t- \frac{x}{c}) \times \vec{A'} = - \frac{1}{c} \vec{n} \times \vec{A'} [/tex]
    [tex] \vec{B} = \vec{n} \times \vec{E} [/tex]

    I can't follow his argument.
    Why did the equation for the electric field change from a time derivative of A to a derivative over (t- x/c).
    And where does that [tex] \nabla (t - x/c) [/tex] come from?
    Finally where does that vector n come from?

    Any help would be greatly appreciated!
  2. jcsd
  3. Sep 13, 2010 #2


    User Avatar
    Homework Helper
    Gold Member

    Let's define [itex]t_r\equiv t-\frac{x}{c}[/itex]. Then apply the chain rule:

    [tex]\begin{aligned}\frac{\partial}{\partial t}\textbf{A}(\textbf{x},t_r) &= \frac{\partial t_r}{\partial t}\frac{\partial}{\partial t_r}\textbf{A}(\textbf{x},t_r)+ \frac{\partial \textbf{x}}{\partial t}\cdot\mathbf{\nabla}\left(\textbf{A}(\textbf{x},t_r)\right) \\ &= (1)\textbf{A}'(\textbf{x},t_r)+(\mathbf{0})\cdot\mathbf{\nabla}\left(\textbf{A}(\textbf{x},t_r)\right) \\ &= \textbf{A}'(\textbf{x},t_r)\end{aligned}[/tex]

    Again, use the chain rule: In index notation w/ Einstein summation convention,

    [tex]\begin{aligned}\mathbf{\nabla}\times\textbf{A}(\textbf{x},t_r) &= \textbf{e}_i\epsilon_{ijk}\partial_j A_k(\textbf{x},t_r) \\ &= \textbf{e}_i\epsilon_{ijk}\left[(\partial_j\textbf{x})\cdot\mathbf{\nabla}A_k(\textbf{x},t)\right]_{t=t_r} + \textbf{e}_i\epsilon_{ijk}\frac{\partial}{\partial t_r} A_k(x_m\textbf{e}_m,t_r) \partial_j t_r \\ &= \textbf{e}_i\epsilon_{ijk}\left[\textbf{e}_j\cdot\mathbf{\nabla}A_k(\textbf{x},t)\right]_{t=t_r}+ (\mathbf{\nabla}t_r)\times\textbf{A}(x_m\textbf{e}_m,t_r) \\ & = \left[\mathbf{\nabla}\times\textbf{A}(x_m\textbf{e}_m,t)\right]_{t=t_r} -\frac{1}{c} (\mathbf{\nabla}x)\times\textbf{A}(x_m\textbf{e}_m,t_r) \\ & =\end{aligned}[/tex]

    I don't have the text with me, but it looks like Landau is describing a case where radiation is emitted in the [itex]\textbf{n}\equiv \mathbf{\nabla}x[/itex] direction, and you are only interested in a region where the non-retarded magnetic field is zero.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook