Vectors Cartesian equations and normals

  • Context: Undergrad 
  • Thread starter Thread starter 53Mark53
  • Start date Start date
  • Tags Tags
    Cartesian Vectors
Click For Summary
SUMMARY

The discussion centers on finding the Cartesian equation of a line k that passes through the point Y(0,1,0) and is normal to the plane defined by the equation -3x - 2y + 2z = 0. The normal vector to the plane is identified as (-3, -2, 2), leading to the equation -3x - 2y + 2z = -2. The correct Cartesian form of the line is derived as -x/3 = -(y-1)/2 = z/2. Additionally, the importance of confirming the perpendicularity of the line to the plane using the dot product is discussed.

PREREQUISITES
  • Understanding of Cartesian equations of lines and planes
  • Knowledge of vector normality and perpendicularity
  • Familiarity with dot product calculations
  • Basic algebraic manipulation of equations
NEXT STEPS
  • Study the concept of vector normality in 3D geometry
  • Learn how to derive Cartesian equations from parametric equations
  • Explore the application of the dot product in determining perpendicularity
  • Investigate different forms of line equations in three-dimensional space
USEFUL FOR

Students studying geometry, mathematics educators, and anyone involved in solving problems related to vector equations and their applications in three-dimensional space.

53Mark53
Messages
52
Reaction score
0
I am having trouble finding the Cartesian equation of the line k which passes through Y(0,1,0) and is normal to -3x-2y+2z=0

this is what I tried to do but not sure if it is the correct method

normal direction (-3,-2,2)

-3x-2y+2z=d

sub in (0,1,0) to -3x-2y+2z=d

d=-2

-3x-2y+2z=-2

is this correct if so how would i get it into cartesian form?
 
Physics news on Phys.org
Define "cartesian form".
 
Simon Bridge said:
Define "cartesian form".
3x=2y=1-z for example
 
so f(x)=g(y)=h(z) means f-g-h=0 ...
 
53Mark53 said:
I am having trouble finding the Cartesian equation of the line k which passes through Y(0,1,0) and is normal to -3x-2y+2z=0

this is what I tried to do but not sure if it is the correct method

normal direction (-3,-2,2)

-3x-2y+2z=d

sub in (0,1,0) to -3x-2y+2z=d

d=-2

-3x-2y+2z=-2

is this correct if so how would i get it into cartesian form?
If line L is parallel to the vector v = <A, B, C> and contains the point ##P(x_0, y_0, z_0)##, its equation in Cartesian form is
$$\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C}$$

In cases where one or more of the coordinates of v happens to be zero, it's permitted to write a denominator of 0 in the associated fraction.
 
Simon Bridge said:
Define "cartesian form".
This is a well-known term for writing equations for a line. Another possibility is parametric form; i.e., x = f(t) + x0, y = g(t) + y0, z = h(t) + z0.
 
Yeah - the idea is to get OP to talk about what it means and so work out a method.
 
Mark44 said:
If line L is parallel to the vector v = <A, B, C> and contains the point ##P(x_0, y_0, z_0)##, its equation in Cartesian form is
$$\frac{x - x_0}{A} = \frac{y - y_0}{B} = \frac{z - z_0}{C}$$

In cases where one or more of the coordinates of v happens to be zero, it's permitted to write a denominator of 0 in the associated fraction.

does this mean the answer would be -x/3=-(y-1)/2=z/2
 
53Mark53 said:
does this mean the answer would be -x/3=-(y-1)/2=z/2
Do these equations satisfy the problem statement? IOW, is the direction of this line perpendicular to the given plane, and is the given point on this line?

BTW, homework questions should be posted in the Homework & Coursework sections, not here in the technical math sections.
 
  • #10
Mark44 said:
Do these equations satisfy the problem statement? IOW, is the direction of this line perpendicular to the given plane, and is the given point on this line?

BTW, homework questions should be posted in the Homework & Coursework sections, not here in the technical math sections.
I am trying to find the line that is normal to the equation why do I need know if it perpendicular to the plane?

would I use the dot product to see if it is perpendicular?
 
  • #11
53Mark53 said:
I am trying to find the line that is normal to the equation why do I need know if it perpendicular to the plane?
A line isn't "normal to an equation." It can be normal to a plane, which is exactly the same as saying the line is perpendicular to the plane.
53Mark53 said:
would I use the dot product to see if it is perpendicular?
Sure you could do that, but it's not necessary. You chose the vector <-3, -2, 2> by inspection, I think, from the plane's equation -3x - 2y + 2z = 0. The line you found has the same direction as the plane's normal, right?

Since you're uncertain about things, maybe verifying that the normal is perpendicular to the plane is a good idea. To do this, take the dot product of any vector that lies in the plane with the normal vector. You can find a vector in the plane by using the plane's equation to find two points, and forming a vector between these two points. Then take the dot product of that vector and the normal <-3, -2, 2>.

BTW, the equation of the plane could also be written as 3x + 2y - 2z = 0, with the normal being <3, 2, -2>. The two equations are equivalent, meaning that they both describe exactly the same set of points, but the vector <3, 2, -2> points in the opposite direction as the normal you found. Although these two vectors are different, both are perpendicular to the plane in this problem.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K