Verify this function is a solution of the heat equation

Click For Summary
SUMMARY

The discussion focuses on verifying that the Galilean boosts of a solution to the heat equation, defined as ##u_\kappa=exp(-)\cdot u(t,x-2t\kappa V)##, remain solutions of the heat equation ##\partial_t u - \Delta u = 0##. The participants detail the application of product and chain rules to compute the necessary derivatives, ultimately concluding that the boxed term must vanish for ##u_\kappa## to satisfy the heat equation. The analysis reveals that the cross terms generated during differentiation are critical to this verification process.

PREREQUISITES
  • Understanding of the heat equation and its mathematical formulation.
  • Familiarity with Galilean transformations in the context of partial differential equations.
  • Proficiency in applying product and chain rules for differentiation.
  • Knowledge of vector calculus, particularly in relation to Laplacians and gradients.
NEXT STEPS
  • Study the derivation of solutions to the heat equation using Fourier transforms.
  • Explore the implications of Galilean invariance in other partial differential equations.
  • Learn about the properties of exponential functions in the context of differential equations.
  • Investigate the role of boundary conditions in the uniqueness of solutions to the heat equation.
USEFUL FOR

Mathematicians, physicists, and engineers working with partial differential equations, particularly those interested in thermal dynamics and fluid mechanics.

docnet
Messages
796
Reaction score
486
Homework Statement
verify this function is a solution of the heat equation
Relevant Equations
##\partial_t u -\Delta u=0##
I spent hours looking at this and cannot figure out where the error is. I'm wondering if there is an error before the boxed expression.

@Orodruin and @PeroK may I ask for your assistance?Consider a solution ##u:[0,\infty)\times \mathbb{R}^n\rightarrow \mathbb{R}## of the heat equation, ie. ##\partial_t u-\Delta u=0##. For ##\kappa>0## and ##V\in \mathbb{R}^n## we define the Galilean boosts of ##u(t,x)## by $$u_\kappa=exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$
$$\Rightarrow exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot u(t,x-2t\kappa V)$$
To show ##u_\kappa## is again a solution of the heat equation, we operate on ##u_\kappa## with ##\partial_t## using the product and chain rules
$$\partial_t u_\kappa=\partial_t\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$
$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \partial_t\big[u(t,x-2t\kappa V)\big]$$
$$=\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_tu\big[(t,x-2t\kappa V)\big]$$
and operate on ##u_\kappa## with ##\Delta## using the product and chain rules
$$\Delta u_\kappa=\Delta\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
$$= \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \Delta\big[ u(t,x-2t\kappa V)\big]$$
and compute
$$\partial_t u_\kappa - \Delta u_\kappa$$
$$\Rightarrow \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$-\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_t\big[ u(t,x-2t\kappa V)\big]$$$$-exp(-<x-t\kappa V,\kappa V>)\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
The first two terms cancel and we have the resulting expression $$\Rightarrow exp(-<x-t\kappa V,\kappa V>)\Big[\partial_t \big[u (t,x-2t\kappa V)\big]-\Delta\big[ u(t,x-2t\kappa V)\big]\Big]$$
We conclude ##u_\kappa## satisfies the heat equation if the terms inside the parenthesis vanish to zero.
$$\partial_t[u(t,x-2t\kappa V)]=\partial_tu(t,x-2t\kappa V)\partial_tt+\partial_xu(t,x-2t\kappa V)\partial_t(x-2t\kappa V)$$$$=\partial_tu(t,x-2t\kappa V)\boxed{-2\kappa V\partial_xu(t,x-2t\kappa V)}$$
$$\Rightarrow \text{ the}\quad\partial_x\quad\text{term creates problems}$$
The ##\Delta## term
$$\partial_{x_i}[u(t,x-2t\kappa V)]=\partial_{x_i}u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}u(t,x-2t\kappa V)$$
$$\partial_{x_i}[\partial_{x_i}u(t,x-2t\kappa V)]=\partial_{x_i}^2u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}^2u(t,x-2t\kappa V)$$
sum over i
$$\Rightarrow \Delta u(t,x-2t\kappa V)$$
if the boxed term vanishes, we could conclude that by the heat equation
$$\partial_t u_\kappa -\Delta u_\kappa = 0$$
the Galilean boosts of ##u_\kappa## is also a solution of the heat equation.
 
Physics news on Phys.org
docnet said:
and operate on ##u_\kappa## with ##\Delta## using the product and chain rules
$$\Delta u_\kappa=\Delta\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
$$= \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \Delta\big[ u(t,x-2t\kappa V)\big]$$
That operator has second derivatives, so you should have cross terms as well.
 
  • Like
Likes   Reactions: docnet
thanks @PeroK! for helping me see my mistake. I'm posting a new attempt for completeness.

Consider a solution ##u:[0,\infty)\times \mathbb{R}^n\rightarrow \mathbb{R}## of the heat equation, ie. ##\partial_t u-\Delta u=0##. For ##\kappa>0## and ##V\in \mathbb{R}^n## we define the Galilean boosts of ##u(t,x)## by $$u_\kappa=exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$= exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot u(t,x-2t\kappa V)$$
Define the previous expression by the following shorthand notation
$$\Rightarrow AB$$
We compute the partial derivatives of ##A## and ##B##
$$\partial_t A=\kappa^2|V|^2A$$
$$\partial_{x_i}A=-\kappa|V|A$$
$$\partial_{x_i}^2A=\kappa^2|V|^2A$$
$$\partial_tB=\partial_tB-2\kappa V\partial_xB$$
$$\partial_{x_i}B=\partial_{x_i}B$$
$$\partial_{x_i}\partial_{x_i}B=\partial_{x_i}^2B$$
To show ##u_\kappa=AB## is again a solution of the heat equation, we operate on ##AB## with ##\partial_t##.
$$\partial_t[AB]= \partial_tA\cdot B+A\partial_tB=\kappa^2|V|^2AB+A(\partial_tB-2\kappa V\partial_xB)$$
and operate on ##AB## with ##\partial_{x_i}##
$$ \partial_{x_i}[AB]=\partial_{x_i}A\cdot B+A\partial_{x_i}B=-\kappa|V|AB+A\partial_{x_i}B$$
and operate on ##\partial_{x_i}[AB]## with ##\partial_{x_i}## $$\partial_{x_i}^2[AB]=-\kappa|V|(\partial_{x_i}A\cdot B+A\partial_{x_i}B)+\partial_{x_i}A\partial_{x_i}B+A\partial_{x_i}^2B$$
$$=-\kappa|V|(-\kappa|V|AB+A\partial_{x_i}B)-\kappa|V|A\partial_{x_i}B+A\partial^2_{x_i}B$$
$$=\kappa^2|V|^2AB-2\kappa|V|A\partial_{x_i}B+A\partial^2_{x_i}B$$
sum over i
$$=\kappa^2|V|^2AB-2\kappa|V|A\cdot \partial_xB+A\Delta B$$
We compute
$$\partial_t[AB]-\Delta[AB]=A(\partial_tB-\Delta B)$$
by the PDE, the terms inside the parenthesis vanish to zero.
$$A\big(\partial_tu(t,x-t\kappa V)-\Delta u(t,x-t\kappa V)\big)=A\cdot 0$$
We conclude that ##AB=u_\kappa## is indeed a solution of the heat equation.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K