Verify this function is a solution of the heat equation

Click For Summary
The discussion focuses on verifying whether the Galilean boosts of a solution to the heat equation, defined as uκ, also satisfy the heat equation. The participants analyze the derivatives of the expression and identify that the boxed term in their calculations creates complications. They conclude that if the terms within the parentheses vanish, uκ will satisfy the heat equation. After further computations and clarifications, they confirm that uκ is indeed a solution of the heat equation, resolving the initial confusion.
docnet
Messages
796
Reaction score
488
Homework Statement
verify this function is a solution of the heat equation
Relevant Equations
##\partial_t u -\Delta u=0##
I spent hours looking at this and cannot figure out where the error is. I'm wondering if there is an error before the boxed expression.

@Orodruin and @PeroK may I ask for your assistance?Consider a solution ##u:[0,\infty)\times \mathbb{R}^n\rightarrow \mathbb{R}## of the heat equation, ie. ##\partial_t u-\Delta u=0##. For ##\kappa>0## and ##V\in \mathbb{R}^n## we define the Galilean boosts of ##u(t,x)## by $$u_\kappa=exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$
$$\Rightarrow exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot u(t,x-2t\kappa V)$$
To show ##u_\kappa## is again a solution of the heat equation, we operate on ##u_\kappa## with ##\partial_t## using the product and chain rules
$$\partial_t u_\kappa=\partial_t\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$
$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \partial_t\big[u(t,x-2t\kappa V)\big]$$
$$=\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_tu\big[(t,x-2t\kappa V)\big]$$
and operate on ##u_\kappa## with ##\Delta## using the product and chain rules
$$\Delta u_\kappa=\Delta\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
$$= \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \Delta\big[ u(t,x-2t\kappa V)\big]$$
and compute
$$\partial_t u_\kappa - \Delta u_\kappa$$
$$\Rightarrow \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$-\kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \partial_t\big[ u(t,x-2t\kappa V)\big]$$$$-exp(-<x-t\kappa V,\kappa V>)\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
The first two terms cancel and we have the resulting expression $$\Rightarrow exp(-<x-t\kappa V,\kappa V>)\Big[\partial_t \big[u (t,x-2t\kappa V)\big]-\Delta\big[ u(t,x-2t\kappa V)\big]\Big]$$
We conclude ##u_\kappa## satisfies the heat equation if the terms inside the parenthesis vanish to zero.
$$\partial_t[u(t,x-2t\kappa V)]=\partial_tu(t,x-2t\kappa V)\partial_tt+\partial_xu(t,x-2t\kappa V)\partial_t(x-2t\kappa V)$$$$=\partial_tu(t,x-2t\kappa V)\boxed{-2\kappa V\partial_xu(t,x-2t\kappa V)}$$
$$\Rightarrow \text{ the}\quad\partial_x\quad\text{term creates problems}$$
The ##\Delta## term
$$\partial_{x_i}[u(t,x-2t\kappa V)]=\partial_{x_i}u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}u(t,x-2t\kappa V)$$
$$\partial_{x_i}[\partial_{x_i}u(t,x-2t\kappa V)]=\partial_{x_i}^2u(t,x-2t\kappa V)\partial_{x_i}(x-2t\kappa V)=\partial_{x_i}^2u(t,x-2t\kappa V)$$
sum over i
$$\Rightarrow \Delta u(t,x-2t\kappa V)$$
if the boxed term vanishes, we could conclude that by the heat equation
$$\partial_t u_\kappa -\Delta u_\kappa = 0$$
the Galilean boosts of ##u_\kappa## is also a solution of the heat equation.
 
Physics news on Phys.org
docnet said:
and operate on ##u_\kappa## with ##\Delta## using the product and chain rules
$$\Delta u_\kappa=\Delta\big[ exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\big]\cdot u(t,x-2t\kappa V)$$$$+exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot \Delta \big[u(t,x-2t\kappa V)\big]$$
$$= \kappa^2 |V|^2exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$+exp(-<x-t\kappa V,\kappa V>)\cdot \Delta\big[ u(t,x-2t\kappa V)\big]$$
That operator has second derivatives, so you should have cross terms as well.
 
thanks @PeroK! for helping me see my mistake. I'm posting a new attempt for completeness.

Consider a solution ##u:[0,\infty)\times \mathbb{R}^n\rightarrow \mathbb{R}## of the heat equation, ie. ##\partial_t u-\Delta u=0##. For ##\kappa>0## and ##V\in \mathbb{R}^n## we define the Galilean boosts of ##u(t,x)## by $$u_\kappa=exp(-<x-t\kappa V,\kappa V>)\cdot u(t,x-2t\kappa V)$$$$= exp(t\kappa^2 |V|^2-\kappa \sum x_iV_i )\cdot u(t,x-2t\kappa V)$$
Define the previous expression by the following shorthand notation
$$\Rightarrow AB$$
We compute the partial derivatives of ##A## and ##B##
$$\partial_t A=\kappa^2|V|^2A$$
$$\partial_{x_i}A=-\kappa|V|A$$
$$\partial_{x_i}^2A=\kappa^2|V|^2A$$
$$\partial_tB=\partial_tB-2\kappa V\partial_xB$$
$$\partial_{x_i}B=\partial_{x_i}B$$
$$\partial_{x_i}\partial_{x_i}B=\partial_{x_i}^2B$$
To show ##u_\kappa=AB## is again a solution of the heat equation, we operate on ##AB## with ##\partial_t##.
$$\partial_t[AB]= \partial_tA\cdot B+A\partial_tB=\kappa^2|V|^2AB+A(\partial_tB-2\kappa V\partial_xB)$$
and operate on ##AB## with ##\partial_{x_i}##
$$ \partial_{x_i}[AB]=\partial_{x_i}A\cdot B+A\partial_{x_i}B=-\kappa|V|AB+A\partial_{x_i}B$$
and operate on ##\partial_{x_i}[AB]## with ##\partial_{x_i}## $$\partial_{x_i}^2[AB]=-\kappa|V|(\partial_{x_i}A\cdot B+A\partial_{x_i}B)+\partial_{x_i}A\partial_{x_i}B+A\partial_{x_i}^2B$$
$$=-\kappa|V|(-\kappa|V|AB+A\partial_{x_i}B)-\kappa|V|A\partial_{x_i}B+A\partial^2_{x_i}B$$
$$=\kappa^2|V|^2AB-2\kappa|V|A\partial_{x_i}B+A\partial^2_{x_i}B$$
sum over i
$$=\kappa^2|V|^2AB-2\kappa|V|A\cdot \partial_xB+A\Delta B$$
We compute
$$\partial_t[AB]-\Delta[AB]=A(\partial_tB-\Delta B)$$
by the PDE, the terms inside the parenthesis vanish to zero.
$$A\big(\partial_tu(t,x-t\kappa V)-\Delta u(t,x-t\kappa V)\big)=A\cdot 0$$
We conclude that ##AB=u_\kappa## is indeed a solution of the heat equation.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...