MHB Vertical and Horizontal Asymptotes

  • Thread starter Thread starter mathewslauren
  • Start date Start date
  • Tags Tags
    Horizontal Vertical
mathewslauren
Messages
3
Reaction score
0
In an inverse variation equation, what are the asymptotes and how do you find them? For example,
I was given the equation: y= [1 \ (x - 3)] - 6 and asked to find the vertical and horizontal asymptote.
I don't really understand what they are and why y= -6 and x=3. Thanks for any help!
 
Last edited:
Mathematics news on Phys.org
Hello and welcome to MHB, mathewslauren! (Wave)

We are given:

$$y=\frac{1}{x-3}-6$$

Now, before we discuss asymptotes, think about if you have a fraction, and you hold the numerator constant, and let the denominator vary. What happens to the value of the fraction if the denominator get larger and larger, without bound...where is the value of the fraction itself headed...and likewise, what if we let the denominator get closer and closer to zero...what happens to the value of the fraction then?
 
The fraction would get smaller as the denominator increases, and larger as it decreases.
 
mathewslauren said:
The fraction would get smaller as the denominator increases, and larger as it decreases.

Well, that's true, but can you be more specific?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
20
Views
2K
Replies
6
Views
1K
Replies
4
Views
5K
Replies
3
Views
1K
Replies
6
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top