MHB Vertical and Horizontal Asymptotes

  • Thread starter Thread starter mathewslauren
  • Start date Start date
  • Tags Tags
    Horizontal Vertical
AI Thread Summary
In the inverse variation equation y = (1 / (x - 3)) - 6, the vertical asymptote occurs where the denominator equals zero, which is at x = 3. The horizontal asymptote is determined by the behavior of the function as x approaches infinity, leading to y = -6. As x increases, the value of y approaches -6, indicating that the function levels off at this line. Understanding asymptotes involves analyzing how the function behaves as the denominator changes. This foundational knowledge is essential for graphing and interpreting the function accurately.
mathewslauren
Messages
3
Reaction score
0
In an inverse variation equation, what are the asymptotes and how do you find them? For example,
I was given the equation: y= [1 \ (x - 3)] - 6 and asked to find the vertical and horizontal asymptote.
I don't really understand what they are and why y= -6 and x=3. Thanks for any help!
 
Last edited:
Mathematics news on Phys.org
Hello and welcome to MHB, mathewslauren! (Wave)

We are given:

$$y=\frac{1}{x-3}-6$$

Now, before we discuss asymptotes, think about if you have a fraction, and you hold the numerator constant, and let the denominator vary. What happens to the value of the fraction if the denominator get larger and larger, without bound...where is the value of the fraction itself headed...and likewise, what if we let the denominator get closer and closer to zero...what happens to the value of the fraction then?
 
The fraction would get smaller as the denominator increases, and larger as it decreases.
 
mathewslauren said:
The fraction would get smaller as the denominator increases, and larger as it decreases.

Well, that's true, but can you be more specific?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
20
Views
2K
Replies
6
Views
1K
Replies
4
Views
5K
Replies
3
Views
1K
Replies
6
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top