I Virtual work and constraint forces

AI Thread Summary
In a system of N particles with constraints, performing a virtual displacement on one particle can cause other particles to move in response. The inquiry focuses on calculating the virtual work done by constraint forces on all particles involved, questioning whether a non-zero result is possible for the work done on the single particle. The discussion references a book that states the total virtual work done by all particles must equal zero, in accordance with the principle of virtual work. However, it clarifies that the work done on an individual particle does not necessarily have to be zero. The principle emphasizes that while the net virtual work is zero, individual contributions may vary.
Ahmed1029
Messages
109
Reaction score
40
Suppose I'm considering a system of N particles that are constrained in their possible motions and so there are less that 3N generalized coordinates. Suppose now I perform a virtual displacement on one particle, which due to some constraints might force some other particles to more virtually with it, like the case of an atwood machine. I now want to calculate the virtual work done by the constraint forces on the particles that move as a corrolary to the movement of this single particle plus the work done on this particle itself, can I get a non-zero result? I'm asking because the book I'm reading assers that the virtual work done by virtually moving ALL the particles has to be zero, and not necessarily the work done to move a single particle has to be zero.
 
Physics news on Phys.org
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top