MHB Viscously damped system

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Damped System
Click For Summary
A viscously damped system with a stiffness of 5000 N/m, a critical damping constant of 0.2 N-s/m, and a logarithmic decrement of 2.0 was analyzed to determine the maximum displacement after an initial velocity of 1 m/s. The calculations yielded a damping ratio of approximately 0.303 and a mass of 2 x 10^-6 kg, leading to a natural frequency of 50000 rad/s. The maximum displacement was found to be approximately 0.0000133809 m, occurring at a critical time of 0.000026501 seconds. The method used for these calculations was confirmed to be correct, and the small mass is considered acceptable for applications like accelerometers and electronic filters. Overall, the analysis provided valid results for the system's behavior.
Dustinsfl
Messages
2,217
Reaction score
5
A viscously damped system has a stiffness of \(5000\) N/m, critical damping constant of \(0.2\) N-s/m, and a logarithmic decrement of \(2.0\). If the system is given an initial velocity of \(1\) m/s, determine the maximum displacement.

From the question, we have that \(k = 5000\), \(\delta = 2.0\), \(c_c = 0.2\), and \(\dot{x}(0) = 1\). I suppose we are also assuming then that \(x(0) = 0\) then for no initial displacement.

Then
\[
\zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}}\approx 0.303314
\]
and
\[
\zeta = \frac{c}{c_c}\Rightarrow c = c_c\zeta\approx 0.0606629
\]

Our general equation of motion is
\begin{align}
x(t) &= e^{-\zeta\omega_nt}\Bigg[x(0)\cos\bigg(\omega_nt\sqrt{1 - \zeta^2}\bigg) +
\frac{\dot{x}(0) + \zeta\omega_nx(0)}{\omega_n\sqrt{1 - \zeta^2}}\sin\bigg(\omega_nt\sqrt{1 - \zeta^2}\bigg)\Bigg]\\
&= e^{-\zeta\omega_nt}\frac{\dot{x}(0)}{\omega_n\sqrt{1 - \zeta^2}}\sin\bigg(\omega_nt\sqrt{1 - \zeta^2}\bigg)
\end{align}
Since \(c_c = 2\sqrt{km}\), \(m = \frac{c_c^2}{4k} = 2\times 10^{-6}\).

I feel wary of the mass being so small which leads to \(\omega_n = 50000\).

Then to find the maximum displacement, I set \(\dot{x} = 0\), and since this is an underdamped system, the max displacement will be at the first \(t\) critical for \(t > 0\).

So \(t_c = 0.000026501\) and \(x_{\max} = 0.0000133809\).

Is this correct is or something wrong or is this method incorrect?
 
Mathematics news on Phys.org
That all looks good to me. 2mg doesn't seems ridiculously small to me. For example small accelerometers, or mechanical (electronic) filters.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
8
Views
1K
  • · Replies 1 ·
Replies
1
Views
736
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K