MHB Viscously damped system

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Damped System
AI Thread Summary
A viscously damped system with a stiffness of 5000 N/m, a critical damping constant of 0.2 N-s/m, and a logarithmic decrement of 2.0 was analyzed to determine the maximum displacement after an initial velocity of 1 m/s. The calculations yielded a damping ratio of approximately 0.303 and a mass of 2 x 10^-6 kg, leading to a natural frequency of 50000 rad/s. The maximum displacement was found to be approximately 0.0000133809 m, occurring at a critical time of 0.000026501 seconds. The method used for these calculations was confirmed to be correct, and the small mass is considered acceptable for applications like accelerometers and electronic filters. Overall, the analysis provided valid results for the system's behavior.
Dustinsfl
Messages
2,217
Reaction score
5
A viscously damped system has a stiffness of \(5000\) N/m, critical damping constant of \(0.2\) N-s/m, and a logarithmic decrement of \(2.0\). If the system is given an initial velocity of \(1\) m/s, determine the maximum displacement.

From the question, we have that \(k = 5000\), \(\delta = 2.0\), \(c_c = 0.2\), and \(\dot{x}(0) = 1\). I suppose we are also assuming then that \(x(0) = 0\) then for no initial displacement.

Then
\[
\zeta = \frac{\delta}{\sqrt{(2\pi)^2 + \delta^2}}\approx 0.303314
\]
and
\[
\zeta = \frac{c}{c_c}\Rightarrow c = c_c\zeta\approx 0.0606629
\]

Our general equation of motion is
\begin{align}
x(t) &= e^{-\zeta\omega_nt}\Bigg[x(0)\cos\bigg(\omega_nt\sqrt{1 - \zeta^2}\bigg) +
\frac{\dot{x}(0) + \zeta\omega_nx(0)}{\omega_n\sqrt{1 - \zeta^2}}\sin\bigg(\omega_nt\sqrt{1 - \zeta^2}\bigg)\Bigg]\\
&= e^{-\zeta\omega_nt}\frac{\dot{x}(0)}{\omega_n\sqrt{1 - \zeta^2}}\sin\bigg(\omega_nt\sqrt{1 - \zeta^2}\bigg)
\end{align}
Since \(c_c = 2\sqrt{km}\), \(m = \frac{c_c^2}{4k} = 2\times 10^{-6}\).

I feel wary of the mass being so small which leads to \(\omega_n = 50000\).

Then to find the maximum displacement, I set \(\dot{x} = 0\), and since this is an underdamped system, the max displacement will be at the first \(t\) critical for \(t > 0\).

So \(t_c = 0.000026501\) and \(x_{\max} = 0.0000133809\).

Is this correct is or something wrong or is this method incorrect?
 
Mathematics news on Phys.org
That all looks good to me. 2mg doesn't seems ridiculously small to me. For example small accelerometers, or mechanical (electronic) filters.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top