MHB Visual illustration of Pearson correlation coefficient r

dhiraj
Messages
3
Reaction score
0
From what I have understood about Pearson correlation coefficient I have created a visual illustration, I would like to know if this understanding looks correct.

Say I have a sample with 5 data points:-

x y
8 6
16 8
20 16
28 12
32 20

My goal is to calculate Pearson correlation coefficient between x and y.

So this is how the diagram I created looks like:-

View attachment 6472

I have done appropriate color coding.

So in this case the covariance between x and y is:-

[math]cov(x,y) = \frac {\sum d_x d_y}{n-1} [/math]

[math]d_x[/math] and [math]d_y[/math] are the deviations (not standard deviation) from [math]\bar{x}[/math] and [math]\bar{y}[/math] respectively, these mean lines are shown in the diagram (red line for [math]\bar{x}[/math] and the green line for [math]\bar{y}[/math]).

Pearson correlation coefficient [math] r = \frac{cov(x,y)}{S_x S_y} [/math]

Based on the diagram, standard deviations of x and y are:-

[math]S_x = \sqrt{ \frac{\sum d_x^2}{n-1} }[/math]

[math]S_y = \sqrt{ \frac{\sum d_y^2}{n-1} }[/math]

So replacing these in the formula for the correlation coefficient we get:-
[math] r = \frac {\sum d_x d_y} { (n-1) \sqrt{ \frac{\sum d_x^2}{n-1} } \sqrt{ \frac{\sum d_y^2}{n-1} } } [/math]Is this interpretation correct with respect to the diagram I have shown? I know the signs of [math]d_x[/math] and [math]d_y[/math] will depend on which side of [math]\bar{x}[/math] and [math]\bar{y}[/math] , [math]x[/math] and [math]y[/math] appear.
 

Attachments

  • Correlation.png
    Correlation.png
    5.4 KB · Views: 108
Mathematics news on Phys.org
Hi dhiraj!

It's all correct.
And note that the formula for $r$ can be simplified to:
$$ r = \frac {\sum d_x d_y} {\sqrt{ \sum d_x^2 } \sqrt{ \sum d_y^2 }}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top