Voltage Confusion: What Am I Missing?

  • Thread starter Thread starter Jaccobtw
  • Start date Start date
  • Tags Tags
    Confusion Voltage
Click For Summary
Voltage is related to the electric potential energy between charged particles, where decreasing distance increases voltage due to the inverse relationship in the equation V = k*q/r. While increasing distance does require more work to separate charges, it also means that the potential energy increases as the distance increases. The confusion arises from the distinction between voltage, which is energy per unit charge, and the work done in moving charges in an electric field. Understanding these concepts clarifies how voltage behaves in relation to distance and charge interactions. The discussion highlights the importance of grasping electric potential and its implications in electrostatics.
Jaccobtw
Messages
163
Reaction score
32
Homework Statement
For two oppositely charged particles, does the distance between them increase or decrease voltage?
Relevant Equations
V = kq/r
I'm confused about voltage. According to this equation, decreasing distance would increase the voltage between two oppositely charge particles, but doesn't increasing the distance increase the potetnial energy between the two particles because the amount of work done would increase with distance, correct? It takes more energy to separate a charge a greater amount of distance increasing the voltage. Also the particles would have greater kinetic energy beginning from a larger distance.. What am I not understanding here? Thank you.
 
Physics news on Phys.org
Hi,
Jaccobtw said:
I'm confused about voltage.
Perhaps it helps to consider the electric potential field as energy per unit of charge.

Jaccobtw said:
According to this equation, decreasing distance would increase the voltage between two oppositely charge particles,
And not talk of voltage between particles.

So a single charge ##q_1##, located at the origin of a coordinate system, has an electric field potential associated in space according to ##V = {k\,q_1\over r}##.

To bring a test charge ##q_2## (a second charge) from infinity to a position at distance ##r## from the origin requires an energy of ##q_2V =
{k\,q_1q_2\over r}##.
I.e. work has to be done to do this if the charges are of opposite sign.

[edit] OOPS! Someone should have jumped on this !
I.e. work has to be done to do this if the charges are of the same sign.

##\ ##
 
Last edited:
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
4
Views
842
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
950
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K