Voltage using different references

AI Thread Summary
The discussion centers on the calculation of electric potential and field for a uniformly charged solid sphere. Two different reference points for potential yield similar expressions for voltage, yet the electric field remains consistent regardless of the reference point chosen. It is clarified that changing the zero potential reference only adds a constant to the potential values, without affecting the electric field. The relationship between potential and electric field is emphasized, showing that the field is independent of the reference point. Ultimately, the electric field remains unchanged despite variations in potential reference points.
darioslc
Messages
9
Reaction score
2
Homework Statement
How the choice of zero voltage at the origin changes the electric field.
Relevant Equations
##\oint_S\vec{E}\cdot d\vec{S}=\frac{Q}{\varepsilon_0}##
##V(r)=-\int \vec{E}\cdot d\vec{l}##
The problem is for a solid sphere uniformly charged with Q and radii R.
First I calculated taked ##V(\infty)=0##, giving me for :
$$
\begin{align*}
V(r)=&\frac{3Q}{8\pi\varepsilon_0 R}-\frac{Q}{8\pi\varepsilon_0 R^3}r^2\qquad\text{if $r<R$}\\
V(r)=&\frac{Q}{4\pi\varepsilon_0 r}\quad\text{if $r\geq R$}\\
\end{align*}
$$
so far well, but when I calculated the voltage with ##V(0)=0## I get a little similar expression:
$$
\begin{align*}
V(r)=&
\begin{cases}
-\frac{Q}{8\pi\varepsilon_0 R^3}r^2\qquad\text{if $r<R$}\\
-\frac{3Q}{8\pi\varepsilon_0 R}+\frac{Q}{4\pi\varepsilon_0 r}\qquad\text{if $r\geq R$}\\
\end{cases}
\end{align*}
$$
for both, I used the expression of the electric field
$$
\begin{align*}
\vec{E}(r)=&
\begin{cases}
\frac{Q}{4\pi\varepsilon_0R^3}r^2\qquad\text{if $r<R$}\\
\frac{Q}{4\pi\varepsilon_0r}\qquad\text{if $r\geq R$}\\
\end{cases}
\end{align*}
$$

In both cases, when I apply the gradient ##\vec{E}=-\nabla V## I get the same field, and I can't understand how can change the field if I take other zero-point references, is not independent of potential? ie, always I get the same field
Maybe have an error in calculus, but I didn't found it.

Thanks a lot!
 
Physics news on Phys.org
I believe potential is always measured relative to something, whereas the electric field is 'absolute'/fixed. Therefore, when you set the zero potential point to a different place, you can get a different potential as you are measuring relative to a different point. An electric circuit is an example; when we say the voltage is '5 V', we really mean that it has a potential that is +5V greater than the chosen zero (i.e. ground). If we chose the ground elsewhere, then the potential would be different I think.
 
  • Like
Likes DaveE
darioslc said:
In both cases, when I apply the gradient ##\vec{E}=-\nabla V## I get the same field

Hi. You are supposed to get the same field. Changing the zero potential reference point does not affect the field.

Changing the reference point simply adds a constant amount to every point's potential.

A change from 100V to 150V over a some distance gives the same field as a change from 120V to 170V over the same distance.

Think of the equivalent gravitational situation: g = -9.81m/s² at the Earth's surface whether you choose to take V=0 at ground level or V=0 at ∞.
 
Hi, thanks for your responses. Then the field shouldn't vary? this is what I was thinking, or the question is a little captious.
 
That's right - the field cannot be changed by changing the reference point. Note that this in not limited to spherical charge distributions, it is always true. I guess the question was set to make you think about why it is true.

If we change the zero reference point, the potential at every point changes by the same fixed amount (say k). Since constants disappear on differentiation:
\vec{E}=-\nabla (V+k) = -\nabla (V)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top