Volume of a solid of revolution around the y-axis (def. integration)

Click For Summary
SUMMARY

The discussion focuses on calculating the volume of a solid of revolution generated by rotating the region bounded by the curves ##y=e^x##, ##x=0##, ##x=1##, and ##y=0## around the y-axis. The initial approach involved using definite integrals, specifically $$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$, which led to incorrect results. A more effective method using cylindrical shells, represented by the volume element ##\Delta V = 2\pi x e^x \Delta x##, was recommended, simplifying the integration process. The final solution was achieved by correctly applying integration by parts and ensuring all terms were accounted for.

PREREQUISITES
  • Understanding of definite integrals and their applications in geometry.
  • Familiarity with the concept of solids of revolution.
  • Knowledge of integration techniques, including integration by parts.
  • Ability to work with exponential functions and their inverses.
NEXT STEPS
  • Study the method of cylindrical shells for calculating volumes of solids of revolution.
  • Practice integration by parts with various functions, particularly logarithmic functions.
  • Explore the use of definite integrals in geometric applications.
  • Review common integral solutions found in mathematical "cheat sheets" for quick reference.
USEFUL FOR

Students studying calculus, particularly those focusing on integration techniques and applications in geometry, as well as educators seeking to enhance their teaching methods for solids of revolution.

greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
Calculate the volume of the solid generated by rotating around the y-axis the plane region delimited by curves:
##y=e^x##
##x=0##
##x=1##
##y=0##
Relevant Equations
Definite integrals definition
First, I calculated the inverse of ##y=e^x## since we're talking about y-axis rotations, which is of course ##x=lny##.
Then, helping myself out with a drawing, I concluded that the total volume of the solid must've been:
$$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$
However this leads me to a wrong result; I must be getting something wrong, probably in the second integration(from 1 to e)...
 
Physics news on Phys.org
greg_rack said:
Homework Statement:: Calculate the volume of the solid generated by rotating around the y-axis the plane region delimited by curves:
##y=e^x##
##x=0##
##x=1##
##y=0##
Relevant Equations:: Definite integrals definition

First, I calculated the inverse of ##y=e^x## since we're talking about y-axis rotations, which is of course ##x=lny##.
Then, helping myself out with a drawing, I concluded that the total volume of the solid must've been:
$$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$
However this leads me to a wrong result; I must be getting something wrong, probably in the second integration(from 1 to e)...
If you integrate using shells, the integral is much simpler. With this method, the typical volume element is ##\Delta V = 2\pi \text{radius} \cdot \text{height} \cdot \text{width} = 2\pi x e^x \Delta x##. The shells run from x = 0 to x = 1.
 
To me, your equation for the volume ##V## looks fine, so if you don't get the correct solution I think you may have made a mistake later during your evaluation of the integrals. In particular, the integral ##\int_{1}^{e}ln^2y \ dy## looks a little nasty. Have you tried partial integration?

Otherwise, Mark44 gives a nice alternative way to solve for ##V##. That integral might look intimidating at first, but it has the advantage that its solution can usually be found in "cheat sheets".
 
hicetnunc said:
To me, your equation for the volume ##V## looks fine, so if you don't get the correct solution I think you may have made a mistake later during your evaluation of the integrals. In particular, the integral ##\int_{1}^{e}ln^2y \ dy## looks a little nasty. Have you tried partial integration?

Otherwise, Mark44 gives a nice alternative way to solve for ##V##. That integral might look intimidating at first, but it has the advantage that its solution can usually be found in "cheat sheets".
Yup, I have managed to solve the integral by parts... and my procedure was actually correct; I only forgot to multiply a term by ##\pi## :oops:

I gave this problem a chance by mere intuition, without having yet studied definite integrals for such geometrical applications, and I believe that's why the method I came up with looks anything but convenient!
Definitely going to go with @Mark44's :)

Thanks guys
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K