Volume of a solid of revolution around the y-axis (def. integration)

Click For Summary
The discussion revolves around calculating the volume of a solid of revolution generated by rotating the region defined by the curves y=e^x, x=0, x=1, and y=0 around the y-axis. Initial attempts involved using a specific integral setup, but the user encountered an incorrect result, suspecting an error in their integration process. An alternative method using cylindrical shells was suggested, which simplifies the calculation. Ultimately, the user resolved their issue by recognizing a multiplication error and acknowledged the need for a more efficient approach. The conversation highlights the importance of understanding integration techniques in solving volume problems in calculus.
greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
Calculate the volume of the solid generated by rotating around the y-axis the plane region delimited by curves:
##y=e^x##
##x=0##
##x=1##
##y=0##
Relevant Equations
Definite integrals definition
First, I calculated the inverse of ##y=e^x## since we're talking about y-axis rotations, which is of course ##x=lny##.
Then, helping myself out with a drawing, I concluded that the total volume of the solid must've been:
$$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$
However this leads me to a wrong result; I must be getting something wrong, probably in the second integration(from 1 to e)...
 
Physics news on Phys.org
greg_rack said:
Homework Statement:: Calculate the volume of the solid generated by rotating around the y-axis the plane region delimited by curves:
##y=e^x##
##x=0##
##x=1##
##y=0##
Relevant Equations:: Definite integrals definition

First, I calculated the inverse of ##y=e^x## since we're talking about y-axis rotations, which is of course ##x=lny##.
Then, helping myself out with a drawing, I concluded that the total volume of the solid must've been:
$$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$
However this leads me to a wrong result; I must be getting something wrong, probably in the second integration(from 1 to e)...
If you integrate using shells, the integral is much simpler. With this method, the typical volume element is ##\Delta V = 2\pi \text{radius} \cdot \text{height} \cdot \text{width} = 2\pi x e^x \Delta x##. The shells run from x = 0 to x = 1.
 
To me, your equation for the volume ##V## looks fine, so if you don't get the correct solution I think you may have made a mistake later during your evaluation of the integrals. In particular, the integral ##\int_{1}^{e}ln^2y \ dy## looks a little nasty. Have you tried partial integration?

Otherwise, Mark44 gives a nice alternative way to solve for ##V##. That integral might look intimidating at first, but it has the advantage that its solution can usually be found in "cheat sheets".
 
hicetnunc said:
To me, your equation for the volume ##V## looks fine, so if you don't get the correct solution I think you may have made a mistake later during your evaluation of the integrals. In particular, the integral ##\int_{1}^{e}ln^2y \ dy## looks a little nasty. Have you tried partial integration?

Otherwise, Mark44 gives a nice alternative way to solve for ##V##. That integral might look intimidating at first, but it has the advantage that its solution can usually be found in "cheat sheets".
Yup, I have managed to solve the integral by parts... and my procedure was actually correct; I only forgot to multiply a term by ##\pi## :oops:

I gave this problem a chance by mere intuition, without having yet studied definite integrals for such geometrical applications, and I believe that's why the method I came up with looks anything but convenient!
Definitely going to go with @Mark44's :)

Thanks guys
 

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K