Volume of a solid of revolution around the y-axis (def. integration)

greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
Calculate the volume of the solid generated by rotating around the y-axis the plane region delimited by curves:
##y=e^x##
##x=0##
##x=1##
##y=0##
Relevant Equations
Definite integrals definition
First, I calculated the inverse of ##y=e^x## since we're talking about y-axis rotations, which is of course ##x=lny##.
Then, helping myself out with a drawing, I concluded that the total volume of the solid must've been:
$$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$
However this leads me to a wrong result; I must be getting something wrong, probably in the second integration(from 1 to e)...
 
Physics news on Phys.org
greg_rack said:
Homework Statement:: Calculate the volume of the solid generated by rotating around the y-axis the plane region delimited by curves:
##y=e^x##
##x=0##
##x=1##
##y=0##
Relevant Equations:: Definite integrals definition

First, I calculated the inverse of ##y=e^x## since we're talking about y-axis rotations, which is of course ##x=lny##.
Then, helping myself out with a drawing, I concluded that the total volume of the solid must've been:
$$V=\pi\int_{0}^{1}1^2 \ dy \ +(\pi\int_{1}^{e}1^2 \ dy \ - \pi \int_{1}^{e}ln^2y \ dy)$$
However this leads me to a wrong result; I must be getting something wrong, probably in the second integration(from 1 to e)...
If you integrate using shells, the integral is much simpler. With this method, the typical volume element is ##\Delta V = 2\pi \text{radius} \cdot \text{height} \cdot \text{width} = 2\pi x e^x \Delta x##. The shells run from x = 0 to x = 1.
 
To me, your equation for the volume ##V## looks fine, so if you don't get the correct solution I think you may have made a mistake later during your evaluation of the integrals. In particular, the integral ##\int_{1}^{e}ln^2y \ dy## looks a little nasty. Have you tried partial integration?

Otherwise, Mark44 gives a nice alternative way to solve for ##V##. That integral might look intimidating at first, but it has the advantage that its solution can usually be found in "cheat sheets".
 
hicetnunc said:
To me, your equation for the volume ##V## looks fine, so if you don't get the correct solution I think you may have made a mistake later during your evaluation of the integrals. In particular, the integral ##\int_{1}^{e}ln^2y \ dy## looks a little nasty. Have you tried partial integration?

Otherwise, Mark44 gives a nice alternative way to solve for ##V##. That integral might look intimidating at first, but it has the advantage that its solution can usually be found in "cheat sheets".
Yup, I have managed to solve the integral by parts... and my procedure was actually correct; I only forgot to multiply a term by ##\pi## :oops:

I gave this problem a chance by mere intuition, without having yet studied definite integrals for such geometrical applications, and I believe that's why the method I came up with looks anything but convenient!
Definitely going to go with @Mark44's :)

Thanks guys
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top