They both intersect at x = 0, 1. Now find the center of mass.
$$M_x=\frac{1}{2}\int_0^1\left(x^4-4x^3+4x^2-x^2\right)\,dx=\frac{1}{2}\int_0^1\left(x^4-4x^3+3x^2\right)\,dx=\frac{1}{10}$$
$$M_y=\int_0^1x\left(-x^2+2x-x\right)\,dx=\int_0^1x\left(-x^2+x\right)\,dx=\int_0^1\left(-x^3+x^2\right)\,dx=\frac{1}{12}$$
$$A=M=\int_0^1\left(-x^2+2x-x\right)\,dx=\int_0^1\left(-x^2+x\right)\,dx=\frac{1}{6}$$
$$\left(\bar{x}\text{, }\bar{y}\right)=\left(\frac{M_y}{M}\text{, }\frac{M_x}{M}\right)=\left(\frac{1/12}{1/6}\text{, }\frac{1/10}{1/6}\right)=\left(\frac{1}{2}\text{, }\frac{3}{5}\right)$$
Distance from this point to y = x. 0 = x - y
$$d=\frac{|(1)(1/2)-(1)(3/5)|}{\sqrt{2}}=\frac{1}{10\sqrt{2}}$$
Theorem of Pappus
$$V=2\pi dA=2\pi\left(\frac{1}{10\sqrt{2}}\right)\left(\frac{1}{6}\right)=\frac{\pi}{30\sqrt{2}}$$