MHB Volume of the solid obtained by rotating R around the line y=x

Click For Summary
The discussion focuses on calculating the volume of the solid formed by rotating the region defined by 0 ≤ x ≤ 1 and 3^x − x − 1 ≤ y ≤ x around the line y = x. The transformation to new coordinates u and v simplifies the integration process, allowing the volume to be expressed as an integral in terms of u. The volume is computed through a series of integrals, including integration by parts for more complex terms. The final volume is expressed as V = (π/√2)(13/3 - 12/ln3 + 8/(ln3)^2), with a numerical approximation of V ≈ 0.086, confirming the calculation's accuracy. This method demonstrates the effectiveness of coordinate transformation in solving volume problems in calculus.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $R$ be the region $\left\{(x, y) : 0 \leq x \leq 1, 3^x − x − 1 \leq y \leq x\right\}$.

Find the volume of the solid obtained by rotating $R$ around the line $y = x$.
 
Mathematics news on Phys.org
lfdahl said:
Let $R$ be the region $\left\{(x, y) : 0 \leq x \leq 1, 3^x − x − 1 \leq y \leq x\right\}$.

Find the volume of the solid obtained by rotating $R$ around the line $y = x$.
[sp]Rotate the axes through $45^\circ$ by introducing new coordinates $u = \dfrac{x+y}{\sqrt2}$, $v = \dfrac{y-x}{\sqrt2}$. The line $y=x$ then becomes the $u$-axis.

If $y = 3^x − x − 1$ then $x+y+1 = 3^x$, and so $\ln(x+y+1) = x\ln3$. In terms of $u$ and $v$ that becomes $\ln(\sqrt2u + 1) = \dfrac{\ln3}{\sqrt2}(u-v)$. Solve that for $v$ to get $$v = u - \frac{\sqrt2}{\ln3}\ln(\sqrt2u + 1).$$

The volume of the solid obtained by rotating $R$ around the $u$-axis is then $$V = \pi\!\!\int_0^{\sqrt2}v^2\,du = \pi\!\!\int_0^{\sqrt2}\left(u - \frac{\sqrt2}{\ln3}\ln(\sqrt2u + 1)\right)^{\!\!2}du.$$ Substitute $t = \sqrt2u+1$: $$V = \pi\!\!\int_1^3\left(\frac{t-1}{\sqrt2} - \frac{\sqrt2}{\ln3}\ln t\right)^{\!\!2}\frac{dt}{\sqrt2} = \frac\pi{\sqrt2}\int_1^3\left(\frac12(t-1)^2 - \frac2{\ln3}(t-1)\ln t + \frac2{(\ln3)^2}(\ln t)^2\right)dt.$$

Dealing with the three terms in that last integral, the first one is easy, the other two require integration by parts: $$\int_1^3 (t-1)^2dt = \Bigl[\frac13(t-1)^3\Bigr]_1^3 = \frac83;$$ $$ \int_1^3 (t-1)\ln t\,dt = \Bigl[\frac12(t-1)^2\ln t \Bigr]_1^3 - \int_1^3 \frac12(t^2 - 2t + 1)\frac1t\,dt = 2\ln3 - \Bigl[\frac14t^2 - t + \frac12\ln t\Bigr]_1^3 = 2\ln 3 - \Bigl(-\frac34 + \frac12\ln3 + \frac34\Bigr) = \frac32\ln3; $$ $$ \int_1^3(\ln t)^2dt = \Bigl[t(\ln t)^2 \Bigr]_1^3 - \int_1^3t\frac{2\ln t}tdt = 3(\ln3)^2 - 2\Bigl[t\ln t - t\Bigr]_1^3 = 3(\ln3)^2 - 6\ln3 + 4.$$

Put those results into the integral for $V$ to get $$V = \frac\pi{\sqrt2}\left(\frac43 - 3 + 6 - \frac{12}{\ln3} + \frac8{(\ln3)^2}\right) = \frac\pi{\sqrt2}\left(\frac{13}3 - \frac{12}{\ln3} + \frac8{(\ln3)^2}\right).$$

Numerically, that gives $V\approx 0.086$, which looks about the right order of magnitude from the appearance of a graph of the function.
[/sp]
 
Thankyou, Opalg, for a nice and thorough solution! (Yes)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K