-w8.3.11 int sqrt{x} dx sqrt{1-x}

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary

Discussion Overview

The discussion revolves around the integral $\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx$. Participants explore various methods for evaluating this integral, including trigonometric substitutions and alternative approaches. The scope includes mathematical reasoning and technical explanations related to calculus.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose using the substitution $x=\sin^2 \left({u}\right)$, leading to an evaluation involving $\int\sin^2 \left({u}\right) \ du$.
  • Others argue for an alternative substitution $u = \sqrt{1 - x}$, which transforms the integral into a different form that avoids certain evaluations.
  • A participant notes that the alternative approach may simplify the process by avoiding the evaluation of $2\int\sin^2 \left({u}\right) \ du$.
  • There are multiple expressions for the integral provided, with different forms of the final result being discussed.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the best method for evaluating the integral, as multiple competing views and approaches remain. Each method has its proponents, and the discussion reflects differing opinions on the merits of each approach.

Contextual Notes

Some steps in the evaluations are complex and may depend on specific substitutions or transformations that are not fully resolved in the discussion. There are also unresolved assumptions regarding the applicability of certain methods.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
w8.3.11 nmh{1000}

$\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
Substitutions $x=\sin^2 \left({u}\right)
\quad dx=2\sin\left({u}\right) \cos\left({u}\right) \ du
\quad u=\arcsin\left({\sqrt{x}}\right)$

This evaluates to $I=2\int\sin^2 \left({u}\right) \ du
= {u}-\sin\left({u}\right) \cos\left({u}\right)$
Back substittute u.. $I=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
 
Last edited:
Physics news on Phys.org
karush said:
Whitman 8.3.11

$\displaystyle \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx
=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
By observation was going to use the trig substitution of
$x=\sin^2 \left({u}\right)$
But this may not merit a trig substitution...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{x}}{\sqrt{1 - x}}\,\mathrm{d}x } &= -2\int{ \sqrt{x}\,\left( -\frac{1}{2\,\sqrt{1 - x}} \right) \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = \sqrt{1 - x} \implies \mathrm{d}u = -\frac{1}{2\,\sqrt{1 - x}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} -2\int{ \sqrt{x}\,\left( -\frac{1}{2\,\sqrt{1 - x}} \right) \,\mathrm{d}x } &= -2\int{ \sqrt{1 - u^2}\,\mathrm{d}u } \end{align*}$

You can now continue with $\displaystyle \begin{align*} u = \sin{\left( \theta \right) } \implies \mathrm{d}u = \cos{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$ to get

$\displaystyle \begin{align*} -2\int{ \sqrt{1 - u^2}\,\mathrm{d}u } &= -2\int{ \sqrt{1 - \sin^2{\left( \theta \right) }}\,\cos{\left( \theta \right) } \,\mathrm{d}\theta } \\ &= -2\int{ \cos^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= -2\int{ \frac{1 + \cos{ \left( 2\,\theta \right) }}{2} \,\mathrm{d}\theta } \\ &= -\int{ \left[ 1 + \cos{ \left( 2\,\theta \right) } \right] \,\mathrm{d}\theta } \\ &= - \left[ \theta + \frac{1}{2}\sin{ \left( 2\,\theta \right) } \right] + C \\ &= - \left[ \theta + \sin{ \left( \theta \right) } \cos{ \left( \theta \right) } \right] + C \\ &= - \left[ \theta + \sin{ \left( \theta \right) } \,\sqrt{ 1 - \sin^2{ \left( \theta \right) } } \right] + C \\ &= - \left[ \arcsin{ \left( u \right) } + u \,\sqrt{ 1 - u^2 } \right] + C \\ &= -\left[ \arcsin{ \left( \sqrt{ 1 - x } \right) } + \sqrt{1 - x} \,\sqrt{ 1 - \left( \sqrt{1 - x} \right) ^2 } \right] + C \\ &= - \left[ \arcsin{ \left( \sqrt{1 - x} \right) } + \sqrt{1 - x} \,\sqrt{ 1 - \left( 1 - x \right) } \right] + C \\ &= - \left[ \arcsin{ \left( \sqrt{1 - x} \right) } + \sqrt{1 - x} \, \sqrt{ x } \right] + C \end{align*}$
 
OK that is quite helpful a lot of steps tho.
I didn't think I would get a reply so I pursued the OP

Yours would avoid the
$$2\int\sin^2 \left({u}\right) \ du$$ evaluation
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K