-w8.3.11 int sqrt{x} dx sqrt{1-x}

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral $\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx$ evaluates to $\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C$. The discussion highlights the use of trigonometric substitution with $x=\sin^2 \left({u}\right)$ and the transformation of the integral into a more manageable form. Additionally, an alternative substitution $u = \sqrt{1 - x}$ is explored, leading to a series of transformations that simplify the evaluation process. The final result confirms the effectiveness of both substitution methods in solving the integral.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of substitution methods in integration
  • Experience with the arcsine function and its properties
NEXT STEPS
  • Study the application of trigonometric substitution in integrals
  • Learn about advanced integration techniques, including integration by parts
  • Explore the properties and applications of the arcsine function
  • Investigate the use of numerical methods for evaluating complex integrals
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and integral evaluation, as well as educators seeking to enhance their teaching methods in integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
w8.3.11 nmh{1000}

$\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
Substitutions $x=\sin^2 \left({u}\right)
\quad dx=2\sin\left({u}\right) \cos\left({u}\right) \ du
\quad u=\arcsin\left({\sqrt{x}}\right)$

This evaluates to $I=2\int\sin^2 \left({u}\right) \ du
= {u}-\sin\left({u}\right) \cos\left({u}\right)$
Back substittute u.. $I=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
 
Last edited:
Physics news on Phys.org
karush said:
Whitman 8.3.11

$\displaystyle \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx
=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
By observation was going to use the trig substitution of
$x=\sin^2 \left({u}\right)$
But this may not merit a trig substitution...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{x}}{\sqrt{1 - x}}\,\mathrm{d}x } &= -2\int{ \sqrt{x}\,\left( -\frac{1}{2\,\sqrt{1 - x}} \right) \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = \sqrt{1 - x} \implies \mathrm{d}u = -\frac{1}{2\,\sqrt{1 - x}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} -2\int{ \sqrt{x}\,\left( -\frac{1}{2\,\sqrt{1 - x}} \right) \,\mathrm{d}x } &= -2\int{ \sqrt{1 - u^2}\,\mathrm{d}u } \end{align*}$

You can now continue with $\displaystyle \begin{align*} u = \sin{\left( \theta \right) } \implies \mathrm{d}u = \cos{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$ to get

$\displaystyle \begin{align*} -2\int{ \sqrt{1 - u^2}\,\mathrm{d}u } &= -2\int{ \sqrt{1 - \sin^2{\left( \theta \right) }}\,\cos{\left( \theta \right) } \,\mathrm{d}\theta } \\ &= -2\int{ \cos^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= -2\int{ \frac{1 + \cos{ \left( 2\,\theta \right) }}{2} \,\mathrm{d}\theta } \\ &= -\int{ \left[ 1 + \cos{ \left( 2\,\theta \right) } \right] \,\mathrm{d}\theta } \\ &= - \left[ \theta + \frac{1}{2}\sin{ \left( 2\,\theta \right) } \right] + C \\ &= - \left[ \theta + \sin{ \left( \theta \right) } \cos{ \left( \theta \right) } \right] + C \\ &= - \left[ \theta + \sin{ \left( \theta \right) } \,\sqrt{ 1 - \sin^2{ \left( \theta \right) } } \right] + C \\ &= - \left[ \arcsin{ \left( u \right) } + u \,\sqrt{ 1 - u^2 } \right] + C \\ &= -\left[ \arcsin{ \left( \sqrt{ 1 - x } \right) } + \sqrt{1 - x} \,\sqrt{ 1 - \left( \sqrt{1 - x} \right) ^2 } \right] + C \\ &= - \left[ \arcsin{ \left( \sqrt{1 - x} \right) } + \sqrt{1 - x} \,\sqrt{ 1 - \left( 1 - x \right) } \right] + C \\ &= - \left[ \arcsin{ \left( \sqrt{1 - x} \right) } + \sqrt{1 - x} \, \sqrt{ x } \right] + C \end{align*}$
 
OK that is quite helpful a lot of steps tho.
I didn't think I would get a reply so I pursued the OP

Yours would avoid the
$$2\int\sin^2 \left({u}\right) \ du$$ evaluation
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K