MHB -w8.3.11 int sqrt{x} dx sqrt{1-x}

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
The integral I = ∫(√x/√(1-x)) dx is evaluated using the substitution x = sin²(u), leading to the result I = arcsin(√x) - √x√(1-x) + C. An alternative approach involves substituting u = √(1-x), transforming the integral into a form that can be solved using trigonometric identities. The discussion highlights the complexity of the evaluation process, with multiple substitution methods explored. Participants note the effectiveness of different approaches and the potential to simplify calculations. The conversation emphasizes the importance of choosing the right substitution for solving integrals efficiently.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
w8.3.11 nmh{1000}

$\displaystyle I= \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
Substitutions $x=\sin^2 \left({u}\right)
\quad dx=2\sin\left({u}\right) \cos\left({u}\right) \ du
\quad u=\arcsin\left({\sqrt{x}}\right)$

This evaluates to $I=2\int\sin^2 \left({u}\right) \ du
= {u}-\sin\left({u}\right) \cos\left({u}\right)$
Back substittute u.. $I=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
 
Last edited:
Physics news on Phys.org
karush said:
Whitman 8.3.11

$\displaystyle \int\frac {\sqrt{x}} {\sqrt{1-x}}\ dx
=\arcsin\left({\sqrt{x}}\right)-\sqrt{x}\sqrt{1 - x}+C $
By observation was going to use the trig substitution of
$x=\sin^2 \left({u}\right)$
But this may not merit a trig substitution...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{x}}{\sqrt{1 - x}}\,\mathrm{d}x } &= -2\int{ \sqrt{x}\,\left( -\frac{1}{2\,\sqrt{1 - x}} \right) \,\mathrm{d}x } \end{align*}$

Let $\displaystyle \begin{align*} u = \sqrt{1 - x} \implies \mathrm{d}u = -\frac{1}{2\,\sqrt{1 - x}}\,\mathrm{d}x \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} -2\int{ \sqrt{x}\,\left( -\frac{1}{2\,\sqrt{1 - x}} \right) \,\mathrm{d}x } &= -2\int{ \sqrt{1 - u^2}\,\mathrm{d}u } \end{align*}$

You can now continue with $\displaystyle \begin{align*} u = \sin{\left( \theta \right) } \implies \mathrm{d}u = \cos{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$ to get

$\displaystyle \begin{align*} -2\int{ \sqrt{1 - u^2}\,\mathrm{d}u } &= -2\int{ \sqrt{1 - \sin^2{\left( \theta \right) }}\,\cos{\left( \theta \right) } \,\mathrm{d}\theta } \\ &= -2\int{ \cos^2{ \left( \theta \right) } \,\mathrm{d}\theta } \\ &= -2\int{ \frac{1 + \cos{ \left( 2\,\theta \right) }}{2} \,\mathrm{d}\theta } \\ &= -\int{ \left[ 1 + \cos{ \left( 2\,\theta \right) } \right] \,\mathrm{d}\theta } \\ &= - \left[ \theta + \frac{1}{2}\sin{ \left( 2\,\theta \right) } \right] + C \\ &= - \left[ \theta + \sin{ \left( \theta \right) } \cos{ \left( \theta \right) } \right] + C \\ &= - \left[ \theta + \sin{ \left( \theta \right) } \,\sqrt{ 1 - \sin^2{ \left( \theta \right) } } \right] + C \\ &= - \left[ \arcsin{ \left( u \right) } + u \,\sqrt{ 1 - u^2 } \right] + C \\ &= -\left[ \arcsin{ \left( \sqrt{ 1 - x } \right) } + \sqrt{1 - x} \,\sqrt{ 1 - \left( \sqrt{1 - x} \right) ^2 } \right] + C \\ &= - \left[ \arcsin{ \left( \sqrt{1 - x} \right) } + \sqrt{1 - x} \,\sqrt{ 1 - \left( 1 - x \right) } \right] + C \\ &= - \left[ \arcsin{ \left( \sqrt{1 - x} \right) } + \sqrt{1 - x} \, \sqrt{ x } \right] + C \end{align*}$
 
OK that is quite helpful a lot of steps tho.
I didn't think I would get a reply so I pursued the OP

Yours would avoid the
$$2\int\sin^2 \left({u}\right) \ du$$ evaluation
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K