A Wave-packet in configuration space

Pradyuman
Messages
6
Reaction score
0
In the book "Group theory and it's Applications to the Quantum Mechanics of atomic spectra " by Eugene P. Wigner

in chapter 4 The elements of quantum mechanics it is written

Consider a many dimensional space with as many coordinates as the system considered as position coordinates. Every arrangement of the positions of the particles of the system corresponds to a point in this multidimensional configuration space. This point will move in the course of time tracing out a curve by which the motion of the system can be completely described classically. There exists a fundamental correspondence between the classical motion of this point, the system point in configuration space, and the motion of a wave packet also considered in configuration space, if only we assume that the index of refraction for these waves is ##\sqrt{2m(E-V)}\over E##, where ##E## is the total energy of the system;##V## is the potential energy as a function in the configuration space.
What does the wave-packet and the refractive index implies here.How to interpret this?
 
Physics news on Phys.org
I do not know the index of refraction in this context. According to the formula you quote, it has physical dimension of ##L^{-1}T##, inverse of velocity, if he does not apply some convention of unit that you have not quoted there.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top