A Wave-packet in configuration space

Pradyuman
Messages
6
Reaction score
0
In the book "Group theory and it's Applications to the Quantum Mechanics of atomic spectra " by Eugene P. Wigner

in chapter 4 The elements of quantum mechanics it is written

Consider a many dimensional space with as many coordinates as the system considered as position coordinates. Every arrangement of the positions of the particles of the system corresponds to a point in this multidimensional configuration space. This point will move in the course of time tracing out a curve by which the motion of the system can be completely described classically. There exists a fundamental correspondence between the classical motion of this point, the system point in configuration space, and the motion of a wave packet also considered in configuration space, if only we assume that the index of refraction for these waves is ##\sqrt{2m(E-V)}\over E##, where ##E## is the total energy of the system;##V## is the potential energy as a function in the configuration space.
What does the wave-packet and the refractive index implies here.How to interpret this?
 
Physics news on Phys.org
I do not know the index of refraction in this context. According to the formula you quote, it has physical dimension of ##L^{-1}T##, inverse of velocity, if he does not apply some convention of unit that you have not quoted there.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top