Wave packet propagating in one dimension

In summary, the conversation discusses the use of the Schrödinger picture to solve a problem involving a wave packet propagating in one dimension with a free particle Hamiltonian. The speaker suggests using the equation d<A>/dt = i/hbar * <[H,A]> and walks through the steps to reach this equation. They also mention their uncertainty about the correctness of their calculations and ask for assistance.
  • #1
krakes
1
0
I am working on a problem that goes
"Show that for a wave packet propagating in one dimension, for a free particle Hamiltonian"

m d<x^2>/dt = <xp> + <px>

What I think I want to do.

Use
d<A>/dt = i/hbar * <[H,A]>

Which leads me to

d<x^2>/dt = i/hbar * <[H,x^2]>

For the free particle H = p^2/2m

Noting the relationship [x,p] = xp - px = ih => xp = ih + px
note in the below I have not typed the bar behind the h to indicate that it is indeed hbar.
[H,X^2] = [P^2/2m,x^2] for the free particle
[H,X^2] = 1/2m (ppxx - xxpp)
[H,X^2] = 1/2m (ppxx - (x(ih + px)p))
[H,X^2] = 1/2m (ppxx - (ihx + xpxp))
[H,X^2] = 1/2m (ppxx - (ihx + (ih + px)(ih + px))
[H,X^2] = 1/2m (ppxx - (ihx + ihih + 2ihpx + (px)(px))
[H,X^2] = 1/2m (ppxx - (ihx -h^2+ 2ihpx + ppxx)
[H,X^2] = 1/2m (ppxx -ihx +h^2 - 2ihpx - ppxx)
[H,X^2] = 1/2m ( -ihx +h^2 - 2ihpx)
or something like this.

This is where I get stuck, as a matter of fact I am not sure of any of the above is correct, I just tried to follow a similar example that goes

m d<x>/dt = i/hbar <[P^2/2m,x]>
[H,X] = 1/2m (ppx - xpp)
[H,X] = 1/2m (ppx - (ih + px)p)
[H,X] = 1/2m (ppx - (pxp + ihp))
[H,X] = 1/2m (ppx - (p(ih + px) + ihp))
[H,X] = 1/2m (ppx - (ihp + ppx + ihp))
[H,X] = -ihp/m

Any help on this would be appreciated.
 
Physics news on Phys.org
  • #2
Using the Schroedinger picture

[tex] m\frac{d}{dt}\langle \hat{x}^{2} \rangle_{|\psi\rangle} =...= \frac{1}{2i\hbar} \langle \psi|[\hat{x}^{2},\hat{H}]_{-}|\psi\rangle =...= \langle \psi|\hat{x}\hat{p}_{x}+\hat{p}_{x}\hat{x}|\psi\rangle [/tex]

Daniel.
 
Back
Top