So, rookie question, I know, but I'm having a little trouble with the idea of wavefunction collapse as it pertains to stationary states:(adsbygoogle = window.adsbygoogle || []).push({});

If a measurement of energy collapses a wavefunction into an energy eigenstate, it stays there forever (unless perturbed). But my impression is that although position measurements collapse a wavefunction, the wavefunction will begin to evolve rather quickly after the measurement.

Does this have something to do with the fact that x doesn't commute with H? What are some other measurements that will yield an evolving wavefunction?

Say I have some operator associated with an observable that has two values: 'happy' and 'sad.' What else do I need to know about this situation to predict whether a measurement of 'happy' will leave the particle in that state for all time?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Wavefunction collapse and measurement

**Physics Forums | Science Articles, Homework Help, Discussion**