I Ways of measuring open quantum systems

Couchyam
Messages
120
Reaction score
18
TL;DR Summary
How many ways can a quantum subsystem be measured (without its complement?)
At the heart of the theory of open quantum systems is the idea that the measurement statistics of many-body systems can be expressed in terms of a reduced density matrix, obtained by tracing over degrees of freedom that are irrelevant to the system of interest.
In general, given a pure state ##|\psi\rangle## in a Hilbert space that is a tensor product of two subsystems, ##\mathcal H = \mathcal H_1\otimes \mathcal H_2##, where ##\mathcal H_1## has orthonormal basis ##|e_a\rangle## and ##\mathcal H_2## basis ##|e_b\rangle##, the reduced density matrix can be defined by
\begin{align*}
\rho_{1,aa'} = \sum_{b} \psi_{ab}\psi^*_{a'b},\quad \psi_{ab}|e_a\rangle|e_b\rangle \equiv |\psi\rangle
\end{align*}
It is easy to check that if ##A## is an operator that acts on the first system alone (i.e. ##A = A_1\otimes \mathbb I_2##, where ##\mathbb I_2## is the identity on ##\mathcal H_2##), then ##\langle A\rangle = \tr(\rho A)##.
The dynamics of the density matrix ##\rho## is induced by whatever Hamiltonian acts on ##|\psi\rangle \in \mathcal H_1\otimes \mathcal H_2##. My question is essentially whether ##\rho## can be thought of as having physical significance beyond a convenient mathematical construct for interpreting quantum statistics in certain experiments. As I understand it, the Hilbert space ##\mathcal H_2## is typically modeled as a large reservoir with a continuum of states, such as a photon/massless gauge boson, or the phonons in a crystal lattice, and this limits the extent to which memory effects are significant, although in the case of a photon field, memory effects could be significant in, for example, a system consisting of particles suspended in a laser cavity or opto-mechanical setup (i.e. where entangled photons could reflect back toward the 'matter' system of interest.) Is it generally possible to "choose" which part of a many-body system can be measured, or are there non-trivial fundamental constraints on what measurements can actually be performed? For example, would it be possible to choose to measure the state of a single spin in a coherently coupled spin network, or would the photon that transmits the information inevitably be entangled with other parts of the system? Apologies if this question isn't worded especially clearly.
 
Physics news on Phys.org
It doesn't need to be a many-body system. It can be a system of 2 particles, for example. In fact, even 1 particle is sufficient, in which case ##{\cal H}_1## can be the spin space, while ##{\cal H}_2## can be the position space.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top