I Ways of measuring open quantum systems

Click For Summary
The discussion centers on the concept of reduced density matrices in open quantum systems, emphasizing their role in measuring many-body systems by tracing over irrelevant degrees of freedom. It explores the physical significance of the reduced density matrix beyond a mere mathematical tool, particularly in systems where one subsystem may interact with a large reservoir. The dynamics of the density matrix are influenced by the Hamiltonian acting on the combined Hilbert space of the subsystems. A key question raised is whether it is possible to selectively measure specific parts of a many-body system, considering potential entanglement with other components. The conversation highlights the complexities of measurement choices in quantum systems, even in simpler setups involving fewer particles.
Couchyam
Messages
120
Reaction score
18
TL;DR
How many ways can a quantum subsystem be measured (without its complement?)
At the heart of the theory of open quantum systems is the idea that the measurement statistics of many-body systems can be expressed in terms of a reduced density matrix, obtained by tracing over degrees of freedom that are irrelevant to the system of interest.
In general, given a pure state ##|\psi\rangle## in a Hilbert space that is a tensor product of two subsystems, ##\mathcal H = \mathcal H_1\otimes \mathcal H_2##, where ##\mathcal H_1## has orthonormal basis ##|e_a\rangle## and ##\mathcal H_2## basis ##|e_b\rangle##, the reduced density matrix can be defined by
\begin{align*}
\rho_{1,aa'} = \sum_{b} \psi_{ab}\psi^*_{a'b},\quad \psi_{ab}|e_a\rangle|e_b\rangle \equiv |\psi\rangle
\end{align*}
It is easy to check that if ##A## is an operator that acts on the first system alone (i.e. ##A = A_1\otimes \mathbb I_2##, where ##\mathbb I_2## is the identity on ##\mathcal H_2##), then ##\langle A\rangle = \tr(\rho A)##.
The dynamics of the density matrix ##\rho## is induced by whatever Hamiltonian acts on ##|\psi\rangle \in \mathcal H_1\otimes \mathcal H_2##. My question is essentially whether ##\rho## can be thought of as having physical significance beyond a convenient mathematical construct for interpreting quantum statistics in certain experiments. As I understand it, the Hilbert space ##\mathcal H_2## is typically modeled as a large reservoir with a continuum of states, such as a photon/massless gauge boson, or the phonons in a crystal lattice, and this limits the extent to which memory effects are significant, although in the case of a photon field, memory effects could be significant in, for example, a system consisting of particles suspended in a laser cavity or opto-mechanical setup (i.e. where entangled photons could reflect back toward the 'matter' system of interest.) Is it generally possible to "choose" which part of a many-body system can be measured, or are there non-trivial fundamental constraints on what measurements can actually be performed? For example, would it be possible to choose to measure the state of a single spin in a coherently coupled spin network, or would the photon that transmits the information inevitably be entangled with other parts of the system? Apologies if this question isn't worded especially clearly.
 
Physics news on Phys.org
It doesn't need to be a many-body system. It can be a system of 2 particles, for example. In fact, even 1 particle is sufficient, in which case ##{\cal H}_1## can be the spin space, while ##{\cal H}_2## can be the position space.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...