Weakly interacting Bosons in a 3D harmonic oscillator

Click For Summary
SUMMARY

The discussion centers on the calculation of the chemical potential for weakly interacting bosons in a 3D harmonic oscillator. The derived expression for the chemical potential is given by ##\mu = \frac{3NU}{4\pi r^3} - \frac{3}{10}V(r)##, which is contingent upon the normalization of the density ##|\Psi (r)|^2##. Participants highlight the importance of integrating the density up to the radius ##R## where ##V(R) = \mu## to avoid negative density values, which occur when ##V(r) > \mu##. The conversation also touches on the relationship between chemical potential and particle number, suggesting that it should scale as ##N^{\frac{2}{5}}##.

PREREQUISITES
  • Understanding of quantum mechanics, specifically the behavior of bosons.
  • Familiarity with the Thomas-Fermi approximation in quantum systems.
  • Knowledge of harmonic oscillator potentials in three dimensions.
  • Ability to perform integrals in the context of quantum density functions.
NEXT STEPS
  • Study the Thomas-Fermi approximation in greater detail to understand its implications on density calculations.
  • Explore the derivation of chemical potential in many-body quantum systems.
  • Learn about the normalization conditions for wave functions in quantum mechanics.
  • Investigate the effects of kinetic energy terms in the context of bosonic systems and their densities.
USEFUL FOR

Physicists, particularly those specializing in quantum mechanics and condensed matter physics, as well as graduate students working on problems related to weakly interacting bosons and harmonic oscillators.

rmiller70015
Messages
110
Reaction score
1
Homework Statement
N identical, weakly interacting bosons are trapped in a 3-dimensional harmonic oscillator. Use the Gross-Pitaevskii equation and N = large to find the chemical potential as a function of the number of bosons.
Relevant Equations
##V(r) = \frac{1}{2}m\omega ^2 r^2##
GP: ##[-\frac{\bar{h}^2 \nabla ^2}{2m} - \mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0###
1. Since N is large, ignore the kinetic energy term.
##[-\mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0##

2. Solve for the density ##|\Psi (r)|^2##
##|\Psi (r)|^2 = \frac{\mu - V(r)}{U}##

3. Integrate density times volume to get number of bosons
##\int|\Psi (r)|^2 d\tau = \int \frac{\mu - V(r)}{U}d\tau###
## = \frac{4\pi}{U} \int_0^r \mu \rho ^2 - \frac{1}{2}m\omega ^2 \rho ^4 d\rho## where ##\rho## is a dummy variable for integration
## N = \frac{4\pi}{U}( \frac{1}{3}\mu r^3 - \frac{1}{10}V(r)r^3 )##4. Solve for ##\mu##
##\mu = \frac{3NU}{4\pi r^3} - \frac{3}{10}V(r)##

The problem is that my professor said that chemical potential should go like ##N^\frac{2}{5}## or something like that. So I am concerned that I didn't do something correctly. She also recalls things from memory incorrectly a lot of the time so I may actually be correct. I would just like a second opinion.
 
Last edited:
Physics news on Phys.org
rmiller70015 said:
The problem is that my professor said that chemical potential should go like ##N^{\frac{2}{5}}## or something like that.
It does.

Notice that your chemical potential is a function of r. You're missing a step. Think about the limits of integration in the normalization condition. Where should you stop integrating the density?
 
Twigg said:
It does.

Notice that your chemical potential is a function of r. You're missing a step. Think about the limits of integration in the normalization condition. Where should you stop integrating the density?
I found a paper that does this in 1-dimensions and I can kind of expand that to 3-dimensions, but they integrate between ##\pm \sqrt{\mu}##. Is this because at ##\sqrt{\mu}## you have a density that drops below the level where you can still be in the Thomas-Fermi regime and the kinetic energy term is no longer negligible?
 
rmiller70015 said:
Is this because at you have a density that drops below the level where you can still be in the Thomas-Fermi regime and the kinetic energy term is no longer negligible?
You're on the right track, but no.

The density you got was $$n(r) = \frac{\mu - V(r)}{U} = \frac{\mu}{U} - \left( \frac{\frac{1}{2}m\omega^2}{U} \right) r^2 $$ Try plotting this density vs r for ##\frac{\mu}{U} = 1## and ##\left( \frac{\frac{1}{2}m\omega^2}{U} \right) = 2## (I made up random numbers, but you'll see what I mean pretty quickly.) Notice anything funky?
 
I think the OP is gone, but here's the solution for anyone browsing this thread.

If you look at the density obtained from the Thomas-Fermi approximation, it eventually goes negative when ##V(r) > \mu##. The missing step was to set the density to 0 for all ##r > R## wgere ##R## is the radius of the atom cloud obtained by solving ##V(R) = \mu##.

In reality, these corners are smoothed out by the kinetic energy Hamiltonian as the density approaches 0, so there are no cusps. But for high average density, these corners are small in extent.
 

Similar threads

Replies
4
Views
669
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
10
Views
2K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K