alyafey22
Gold Member
MHB
- 1,556
- 2
Integration lessons continued ...
4.5.2.Exercises In this section I will give some exercises that involve Polylogarithms
Find the following integral
where $$\log$$ represents the natural logarithm
Integrate by parts by Integrating
$$\frac{\log(1-x)}{x} = - \text{Li}_2(x)$$
Differentiating
$$\log(x) = \frac{1}{x}$$
So we have
$$I=-\log(x) \text{Li}_2(x) |^1_0+\int^1_0 \frac{\text{Li}_2(t)}{t}\, dt$$
$$I=\text{Li}_3(1) = \sum_{k\geq 1} \frac{1}{k^3} = \zeta(3)$$
Evaluate the following integral
Integrating by parts we get the following $$\int^x_0 \frac{\log^2(1-t)}{t}\, dt = - \log(1-x) \text{Li}_2(x) -\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt $$Now we are left with the following integral $$\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt = \int^{1}_{1-x} \frac{\text{Li}_2 (1-t)}{t} \, dt $$Using a result we obtained earlier $$\int^{1}_{1-x} \frac{\frac{\pi^2}{6} -\text{Li}_2(t) - \log(1-t) \log(t)}{t} \, dt $$$$ -\frac{\pi^2}{6}\log(1-x)- \int^{1}_{1-x} \frac{\text{Li}_2(t)}{t}\,dt -\int^{1}_{1-x}\frac{ \log(1-t) \log(t)}{t} \, dt $$The first integral
This section concludes the PolyLogarithm discussion , I will start the Hypergeometric function in the next thread .
4.5.2.Exercises In this section I will give some exercises that involve Polylogarithms
Find the following integral
$$I=\int^1_0 \, \frac{\log(1-x) \log(x) }{x} \, dx $$
where $$\log$$ represents the natural logarithm
Integrate by parts by Integrating
$$\frac{\log(1-x)}{x} = - \text{Li}_2(x)$$
Differentiating
$$\log(x) = \frac{1}{x}$$
So we have
$$I=-\log(x) \text{Li}_2(x) |^1_0+\int^1_0 \frac{\text{Li}_2(t)}{t}\, dt$$
$$I=\text{Li}_3(1) = \sum_{k\geq 1} \frac{1}{k^3} = \zeta(3)$$
Evaluate the following integral
$$\int^x_0 \frac{\log^2(1-t)}{t}\, dt \,\,\,\,\, 0<x<1$$
Integrating by parts we get the following $$\int^x_0 \frac{\log^2(1-t)}{t}\, dt = - \log(1-x) \text{Li}_2(x) -\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt $$Now we are left with the following integral $$\int^x_0\frac{\text{Li}_2 (t)}{1-t} \, dt = \int^{1}_{1-x} \frac{\text{Li}_2 (1-t)}{t} \, dt $$Using a result we obtained earlier $$\int^{1}_{1-x} \frac{\frac{\pi^2}{6} -\text{Li}_2(t) - \log(1-t) \log(t)}{t} \, dt $$$$ -\frac{\pi^2}{6}\log(1-x)- \int^{1}_{1-x} \frac{\text{Li}_2(t)}{t}\,dt -\int^{1}_{1-x}\frac{ \log(1-t) \log(t)}{t} \, dt $$The first integral
- $$\int^{1}_{1-x} \frac{\text{Li}_2(t)}{t}\,dt =\text{Li}_3(1)-\text{Li}_3(1-x) $$
- $$ \int^{1}_{1-x}\frac{ \log(1-t) \log(t)}{t} =\text{Li}_3(1) +\log(1-x)\text{Li}_2(1-x)-\text{Li}_3(1-x) $$
This section concludes the PolyLogarithm discussion , I will start the Hypergeometric function in the next thread .
Last edited: