alyafey22
Gold Member
MHB
- 1,556
- 2
(AIT) Cosine Integral function
4.Integration using special functions (continued)
4.12. Cosine Integral function
Define
$$\mathrm{ci}(x) =- \int^\infty_x \frac{\cos(t)}{t}\,dt $$
A related function is the following
$$\mathrm{Cin}(x) = \int^x_0 \frac{1-\cos(t)}{t}\,dt$$
The derivative is
$$\frac{d}{dx}\mathrm{ci}(x) = \frac{\cos(x)}{x}$$
The integral
$$\int \mathrm{ci}(x) \,dx = x\mathrm{ci}(x)-\sin(x)$$
Prove the following
$$\mathrm{Cin}(x) = -\mathrm{ci}(x)+\log(x)+\gamma$$
Start by
$$\mathrm{Cin}(x) = \int^x_0 \frac{1-\cos(t)}{t}\,dt$$
Rewrite as
$$\mathrm{Cin}(x) =\int^\infty_0 \frac{1-\cos(t)}{t}\,dt- \int^\infty_x \frac{1-\cos(t)}{t}\,dt$$
Which simplifies to
$$\mathrm{Cin}(x) =\lim_{z \to \infty } \left[\int^z_0 \frac{1-\cos(t)}{t}\,dt- \log(z)\right] -\mathrm{ci}(x)+\log(x)$$
The limit goes to the Euler Maschorinit constant
$$\mathrm{Cin}(x) =\gamma -\mathrm{ci}(x)+\log(x)$$
Find the integral
$$\int^\infty_0 \mathrm{ci}(x) \, \cos(px) \, dx $$
Using integration by parts we get
$$\left[\frac{\mathrm{ci}(x) \sin(px)}{p} \right]^\infty_0-\frac{1}{p}\int^\infty_0 \frac{\cos(x)}{x} \, \sin(px) \, dx $$
Taking the limits
$$\lim_{x \to 0} \frac{\mathrm{ci}(x) \sin(px)}{p}=0$$
$$\lim_{x \to \infty}\frac{\mathrm{ci}(x) \sin(px)}{p} = 0$$
Hence we get
$$-\frac{1}{p}\int^\infty_0 \frac{\cos(x)}{x} \, \sin(px) \, dx$$
The integral
$$\int^\infty_0 \frac{\cos(x)}{x} \, \sin(px) \, dx = \frac{1}{2}\int^\infty_0 \frac{\sin((p-1)x) +\sin((p+1)x)}{x}dx $$
Separate the integrals
$$I = \frac{1}{2}\int^\infty_0 \frac{\sin((p+1)x)}{x}dx +\frac{1}{2}\int^\infty_0 \frac{\sin((p-1)x)}{x}dx $$
If $p-1>0$ we get
$$I = \frac{\pi}{4}+\frac{\pi}{4} = \frac{\pi}{2}$$
If $p-1<0$
$$I = \frac{\pi}{4}-\frac{\pi}{4} = 0 $$
If $p=1$ we have
$$I = \frac{1}{2}\int^\infty_0 \frac{\sin(2x)}{x}dx +0 = \frac{\pi}{4}$$
Finally we get
$$\int^\infty_0 \mathrm{ci}(x) \, \cos(px) \, dx =
\begin{cases}
-\frac{\pi}{2p} & p > 1 \\
-\frac{\pi}{4p} & p = 1 \\
0 & p < 1
\end{cases}$$
Find the integral for, $p>1$
$$\int^\infty_0 \mathrm{ci}(px) \mathrm{ci}(x)\,dx$$
Let
$$I(p) = \int^\infty_0 \mathrm{ci}(px) \mathrm{ci}(x)\,dx$$
Differentiate with respect to $p$
$$I'(p) = \frac{1}{p}\int^\infty_0 \mathrm{cos}(px) \mathrm{ci}(x)\,dx$$
If $p>1$ from the previous example we conclude that
$$I'(p) = \frac{1}{p}\left(\frac{-\pi}{2p}\right) = -\frac{\pi}{2p^2}$$
Integrate with respect to $p$
$$I(p) = \frac{\pi}{2p} + C$$
Take the limit $p \to \infty$, so $C = 0$.
4.Integration using special functions (continued)
4.12. Cosine Integral function
Define
$$\mathrm{ci}(x) =- \int^\infty_x \frac{\cos(t)}{t}\,dt $$
A related function is the following
$$\mathrm{Cin}(x) = \int^x_0 \frac{1-\cos(t)}{t}\,dt$$
The derivative is
$$\frac{d}{dx}\mathrm{ci}(x) = \frac{\cos(x)}{x}$$
The integral
$$\int \mathrm{ci}(x) \,dx = x\mathrm{ci}(x)-\sin(x)$$
Prove the following
$$\mathrm{Cin}(x) = -\mathrm{ci}(x)+\log(x)+\gamma$$
Start by
$$\mathrm{Cin}(x) = \int^x_0 \frac{1-\cos(t)}{t}\,dt$$
Rewrite as
$$\mathrm{Cin}(x) =\int^\infty_0 \frac{1-\cos(t)}{t}\,dt- \int^\infty_x \frac{1-\cos(t)}{t}\,dt$$
Which simplifies to
$$\mathrm{Cin}(x) =\lim_{z \to \infty } \left[\int^z_0 \frac{1-\cos(t)}{t}\,dt- \log(z)\right] -\mathrm{ci}(x)+\log(x)$$
The limit goes to the Euler Maschorinit constant
$$\mathrm{Cin}(x) =\gamma -\mathrm{ci}(x)+\log(x)$$
Find the integral
$$\int^\infty_0 \mathrm{ci}(x) \, \cos(px) \, dx $$
Using integration by parts we get
$$\left[\frac{\mathrm{ci}(x) \sin(px)}{p} \right]^\infty_0-\frac{1}{p}\int^\infty_0 \frac{\cos(x)}{x} \, \sin(px) \, dx $$
Taking the limits
$$\lim_{x \to 0} \frac{\mathrm{ci}(x) \sin(px)}{p}=0$$
$$\lim_{x \to \infty}\frac{\mathrm{ci}(x) \sin(px)}{p} = 0$$
Hence we get
$$-\frac{1}{p}\int^\infty_0 \frac{\cos(x)}{x} \, \sin(px) \, dx$$
The integral
$$\int^\infty_0 \frac{\cos(x)}{x} \, \sin(px) \, dx = \frac{1}{2}\int^\infty_0 \frac{\sin((p-1)x) +\sin((p+1)x)}{x}dx $$
Separate the integrals
$$I = \frac{1}{2}\int^\infty_0 \frac{\sin((p+1)x)}{x}dx +\frac{1}{2}\int^\infty_0 \frac{\sin((p-1)x)}{x}dx $$
If $p-1>0$ we get
$$I = \frac{\pi}{4}+\frac{\pi}{4} = \frac{\pi}{2}$$
If $p-1<0$
$$I = \frac{\pi}{4}-\frac{\pi}{4} = 0 $$
If $p=1$ we have
$$I = \frac{1}{2}\int^\infty_0 \frac{\sin(2x)}{x}dx +0 = \frac{\pi}{4}$$
Finally we get
$$\int^\infty_0 \mathrm{ci}(x) \, \cos(px) \, dx =
\begin{cases}
-\frac{\pi}{2p} & p > 1 \\
-\frac{\pi}{4p} & p = 1 \\
0 & p < 1
\end{cases}$$
Find the integral for, $p>1$
$$\int^\infty_0 \mathrm{ci}(px) \mathrm{ci}(x)\,dx$$
Let
$$I(p) = \int^\infty_0 \mathrm{ci}(px) \mathrm{ci}(x)\,dx$$
Differentiate with respect to $p$
$$I'(p) = \frac{1}{p}\int^\infty_0 \mathrm{cos}(px) \mathrm{ci}(x)\,dx$$
If $p>1$ from the previous example we conclude that
$$I'(p) = \frac{1}{p}\left(\frac{-\pi}{2p}\right) = -\frac{\pi}{2p^2}$$
Integrate with respect to $p$
$$I(p) = \frac{\pi}{2p} + C$$
Take the limit $p \to \infty$, so $C = 0$.