alyafey22
Gold Member
MHB
- 1,556
- 2
Re: (AIT) Barnes G function
Relation to Hyperfactorial function
Prove for $n$ is a positive integer
$$G(n+1) = \frac{(N!)^n}{H(n)}$$
Where $H(n)$ is the hyperfactorial function
$$H(n) = \prod^n_{k=1}k^k$$
proof
We can prove it by induction for $n=0$ we have, $G(1)=1$,
suppose that
$$G(n) = \frac{\Gamma(n)^{n-1}}{H(n-1)}$$
we want to find
$$G(n+1) = \Gamma(n)G(n) = \Gamma(n) \frac{\Gamma(n)^{n-1}}{H(n-1)}$$
Notice that
$$H(n-1) = \prod^{n-1}k^k = \frac{\prod^{n}k^k}{n^n} = \frac{H(n)}{n^n }$$
We deduce that
$$G(n+1) = \Gamma(n)G(n) = \frac{\Gamma(n)^{n}\times n^n}{H(n)} = \frac{(N!)^n}{H(n)}$$
A related constant
We define the Glaisher-Kinkelin constant as
$$A = \lim_{n \to \infty}\frac{H(n)}{n^{n^2/2+n/2+1/12}e^{-n^2/4}}$$
Prove that
$$\lim_{n \to \infty}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} = \frac{e^{1/12}}{A}$$
proof
From the previous result we have
$$\lim_{n \to \infty}\frac{(N!)^n}{H(n)(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$
Now use the Stirling approximation
$$(N!)^n \sim (2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}$$
Hence we deduce that
$$\lim_{n \to \infty}\frac{(2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}}{H(n)}\times\frac{1}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$
By simplifications we have
$$e^{1/12}\lim_{n \to \infty}\frac{n^{n^2/2+n/2+1/12}e^{-n^2/4}}{H(n)} = \frac{e^{1/12}}{A}$$
Exercise
$$\zeta'(2) = \frac{\pi^2}{6}\left(\log(2\pi)+\gamma-12\log A \right)$$
We already proved that
$$\log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right] \sim \frac{1}{12}-\log A$$
Let the following
$$f(n) = \log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$
Use the series representation of the Barnes functions
$$f(n) = \log \left[ \frac{(2\pi)^{n/2}\exp\left(-\frac{n+n^2(1+\gamma)}{2}\right)\prod_{k=1}^{\infty}\left\{\left(1+\frac{n}{k} \right)^k\exp\left(\frac{n^2}{2k}-n\right) \right\}}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$
Which reduces to
$$f(n) = -\frac{n+n^2(1+\gamma)}{2}+\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n \right\}\\ -\left( \frac{n^2}{2}-\frac{1}{12}\right)\log(n)+\frac{3n^2}{4}$$
Differentiate with respect to $n$
$$f'(n) = -\frac{1}{2}-n-\gamma n+n\psi(n)+\gamma n+1-n\log(n)-\frac{n}{2}+\frac{1}{12n}+\frac{3n}{2}$$
Note that we already showed that
$$\frac{d}{dn}\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n\right\}= n\psi(n)+\gamma n+1$$
By simplifications we have
$$f'(n) = n\psi(n)-n\log(n)+\frac{1}{12n}+\frac{1}{2}$$
Now use that
$$\psi(n) = \log(n)-\frac{1}{2n}-2\int^\infty_0 \frac{z dz}{(n^2+z^2)(e^{2\pi z}-1)}dz$$
Hence we deduce that
$$f'(n) =-2\int^\infty_0 \frac{nz dz}{(n^2+z^2)(e^{2\pi z}-1)}dz+\frac{1}{12n}$$
Integrate with respect to $n$
$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+C$$
Take the limit $n \to 0$
$$C = \lim_{n \to 0}f(n)-\frac{1}{12}\log(n)+\int^\infty_0 \frac{z\log(z^2)}{(e^{2\pi z}-1)}dz $$
Hence we have the limit
$$\lim_{n \to 0}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}-\frac{1}{12}\log(n) = \lim_{n \to 0}\log \frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2} e^{-3n^2/4}} = 0$$
Hence we see that
$$C = 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz $$
Finally we have
$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$
$$f(n) =-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz-\log(n^2)\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)\\+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$
Also we have
$$\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz = \frac{1}{24}$$
That simplifies to
$$f(n)=-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz+2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$
Take the limit $n \to \infty $
$$2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz = \frac{1}{12}-\log A$$
Now use that
$$
\begin{align}
2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz
&= 2\int^\infty_0 \frac{z\log(z)}{e^{2\pi z}}\times \frac{1}{1-e^{-2\pi z}}dz\\
&= 2\sum_{n=0}^\infty \int^\infty_0 e^{-2\pi z(n+1)}z\log(z)\,dz\\
&= \sum_{n=1}^\infty \frac{\psi(2) − \log(2\pi)+\log(n)}{2\pi^2 n^2}\\
&=\frac{(\psi(2)-\log(2\pi))\zeta(2)+\zeta'(2)}{2\pi^2}\\
\end{align}
$$
Hence we conclude that
$$\zeta'(2) =(\log(2\pi)-\psi(2))\zeta(2) + 2\pi^2\left(\frac{1}{12}-\log A \right) = \zeta(2) (\log(2\pi)+\gamma-12 \log A)$$
Relation to Hyperfactorial function
Prove for $n$ is a positive integer
$$G(n+1) = \frac{(N!)^n}{H(n)}$$
Where $H(n)$ is the hyperfactorial function
$$H(n) = \prod^n_{k=1}k^k$$
proof
We can prove it by induction for $n=0$ we have, $G(1)=1$,
suppose that
$$G(n) = \frac{\Gamma(n)^{n-1}}{H(n-1)}$$
we want to find
$$G(n+1) = \Gamma(n)G(n) = \Gamma(n) \frac{\Gamma(n)^{n-1}}{H(n-1)}$$
Notice that
$$H(n-1) = \prod^{n-1}k^k = \frac{\prod^{n}k^k}{n^n} = \frac{H(n)}{n^n }$$
We deduce that
$$G(n+1) = \Gamma(n)G(n) = \frac{\Gamma(n)^{n}\times n^n}{H(n)} = \frac{(N!)^n}{H(n)}$$
A related constant
We define the Glaisher-Kinkelin constant as
$$A = \lim_{n \to \infty}\frac{H(n)}{n^{n^2/2+n/2+1/12}e^{-n^2/4}}$$
Prove that
$$\lim_{n \to \infty}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} = \frac{e^{1/12}}{A}$$
proof
From the previous result we have
$$\lim_{n \to \infty}\frac{(N!)^n}{H(n)(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$
Now use the Stirling approximation
$$(N!)^n \sim (2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}$$
Hence we deduce that
$$\lim_{n \to \infty}\frac{(2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}}{H(n)}\times\frac{1}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$
By simplifications we have
$$e^{1/12}\lim_{n \to \infty}\frac{n^{n^2/2+n/2+1/12}e^{-n^2/4}}{H(n)} = \frac{e^{1/12}}{A}$$
Exercise
$$\zeta'(2) = \frac{\pi^2}{6}\left(\log(2\pi)+\gamma-12\log A \right)$$
We already proved that
$$\log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right] \sim \frac{1}{12}-\log A$$
Let the following
$$f(n) = \log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$
Use the series representation of the Barnes functions
$$f(n) = \log \left[ \frac{(2\pi)^{n/2}\exp\left(-\frac{n+n^2(1+\gamma)}{2}\right)\prod_{k=1}^{\infty}\left\{\left(1+\frac{n}{k} \right)^k\exp\left(\frac{n^2}{2k}-n\right) \right\}}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$
Which reduces to
$$f(n) = -\frac{n+n^2(1+\gamma)}{2}+\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n \right\}\\ -\left( \frac{n^2}{2}-\frac{1}{12}\right)\log(n)+\frac{3n^2}{4}$$
Differentiate with respect to $n$
$$f'(n) = -\frac{1}{2}-n-\gamma n+n\psi(n)+\gamma n+1-n\log(n)-\frac{n}{2}+\frac{1}{12n}+\frac{3n}{2}$$
Note that we already showed that
$$\frac{d}{dn}\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n\right\}= n\psi(n)+\gamma n+1$$
By simplifications we have
$$f'(n) = n\psi(n)-n\log(n)+\frac{1}{12n}+\frac{1}{2}$$
Now use that
$$\psi(n) = \log(n)-\frac{1}{2n}-2\int^\infty_0 \frac{z dz}{(n^2+z^2)(e^{2\pi z}-1)}dz$$
Hence we deduce that
$$f'(n) =-2\int^\infty_0 \frac{nz dz}{(n^2+z^2)(e^{2\pi z}-1)}dz+\frac{1}{12n}$$
Integrate with respect to $n$
$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+C$$
Take the limit $n \to 0$
$$C = \lim_{n \to 0}f(n)-\frac{1}{12}\log(n)+\int^\infty_0 \frac{z\log(z^2)}{(e^{2\pi z}-1)}dz $$
Hence we have the limit
$$\lim_{n \to 0}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}-\frac{1}{12}\log(n) = \lim_{n \to 0}\log \frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2} e^{-3n^2/4}} = 0$$
Hence we see that
$$C = 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz $$
Finally we have
$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$
$$f(n) =-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz-\log(n^2)\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)\\+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$
Also we have
$$\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz = \frac{1}{24}$$
That simplifies to
$$f(n)=-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz+2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$
Take the limit $n \to \infty $
$$2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz = \frac{1}{12}-\log A$$
Now use that
$$
\begin{align}
2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz
&= 2\int^\infty_0 \frac{z\log(z)}{e^{2\pi z}}\times \frac{1}{1-e^{-2\pi z}}dz\\
&= 2\sum_{n=0}^\infty \int^\infty_0 e^{-2\pi z(n+1)}z\log(z)\,dz\\
&= \sum_{n=1}^\infty \frac{\psi(2) − \log(2\pi)+\log(n)}{2\pi^2 n^2}\\
&=\frac{(\psi(2)-\log(2\pi))\zeta(2)+\zeta'(2)}{2\pi^2}\\
\end{align}
$$
Hence we conclude that
$$\zeta'(2) =(\log(2\pi)-\psi(2))\zeta(2) + 2\pi^2\left(\frac{1}{12}-\log A \right) = \zeta(2) (\log(2\pi)+\gamma-12 \log A)$$