MHB What Are Advanced Integration Techniques in Mathematics?

Click For Summary
Advanced integration techniques in mathematics encompass various methods, including differentiation under the integral sign, hyperbolic integration, and the Laplace transform. Differentiation under the integral sign allows for solving complex integrals by introducing a second variable, which can simplify calculations significantly. Hyperbolic functions facilitate the conversion between trigonometric and hyperbolic forms, aiding in the integration of complex expressions. The Laplace transform is highlighted for its utility in solving differential equations and integration problems, with specific examples demonstrating its application. Mastery of these techniques requires practice and a solid understanding of foundational calculus concepts.
  • #61
Re: (AIT) Barnes G function

Relation to Hyperfactorial function


Prove for $n$ is a positive integer

$$G(n+1) = \frac{(N!)^n}{H(n)}$$

Where $H(n)$ is the hyperfactorial function

$$H(n) = \prod^n_{k=1}k^k$$

proof

We can prove it by induction for $n=0$ we have, $G(1)=1$,

suppose that

$$G(n) = \frac{\Gamma(n)^{n-1}}{H(n-1)}$$

we want to find

$$G(n+1) = \Gamma(n)G(n) = \Gamma(n) \frac{\Gamma(n)^{n-1}}{H(n-1)}$$

Notice that

$$H(n-1) = \prod^{n-1}k^k = \frac{\prod^{n}k^k}{n^n} = \frac{H(n)}{n^n }$$

We deduce that

$$G(n+1) = \Gamma(n)G(n) = \frac{\Gamma(n)^{n}\times n^n}{H(n)} = \frac{(N!)^n}{H(n)}$$

A related constant


We define the Glaisher-Kinkelin constant as

$$A = \lim_{n \to \infty}\frac{H(n)}{n^{n^2/2+n/2+1/12}e^{-n^2/4}}$$

Prove that

$$\lim_{n \to \infty}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} = \frac{e^{1/12}}{A}$$

proof

From the previous result we have

$$\lim_{n \to \infty}\frac{(N!)^n}{H(n)(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$

Now use the Stirling approximation

$$(N!)^n \sim (2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}$$

Hence we deduce that

$$\lim_{n \to \infty}\frac{(2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}}{H(n)}\times\frac{1}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$

By simplifications we have

$$e^{1/12}\lim_{n \to \infty}\frac{n^{n^2/2+n/2+1/12}e^{-n^2/4}}{H(n)} = \frac{e^{1/12}}{A}$$

Exercise

$$\zeta'(2) = \frac{\pi^2}{6}\left(\log(2\pi)+\gamma-12\log A \right)$$

We already proved that

$$\log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right] \sim \frac{1}{12}-\log A$$

Let the following

$$f(n) = \log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$

Use the series representation of the Barnes functions

$$f(n) = \log \left[ \frac{(2\pi)^{n/2}\exp\left(-\frac{n+n^2(1+\gamma)}{2}\right)\prod_{k=1}^{\infty}\left\{\left(1+\frac{n}{k} \right)^k\exp\left(\frac{n^2}{2k}-n\right) \right\}}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$

Which reduces to

$$f(n) = -\frac{n+n^2(1+\gamma)}{2}+\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n \right\}\\ -\left( \frac{n^2}{2}-\frac{1}{12}\right)\log(n)+\frac{3n^2}{4}$$

Differentiate with respect to $n$

$$f'(n) = -\frac{1}{2}-n-\gamma n+n\psi(n)+\gamma n+1-n\log(n)-\frac{n}{2}+\frac{1}{12n}+\frac{3n}{2}$$

Note that we already showed that

$$\frac{d}{dn}\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n\right\}= n\psi(n)+\gamma n+1$$

By simplifications we have

$$f'(n) = n\psi(n)-n\log(n)+\frac{1}{12n}+\frac{1}{2}$$

Now use that

$$\psi(n) = \log(n)-\frac{1}{2n}-2\int^\infty_0 \frac{z dz}{(n^2+z^2)(e^{2\pi z}-1)}dz$$

Hence we deduce that

$$f'(n) =-2\int^\infty_0 \frac{nz dz}{(n^2+z^2)(e^{2\pi z}-1)}dz+\frac{1}{12n}$$

Integrate with respect to $n$

$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+C$$

Take the limit $n \to 0$

$$C = \lim_{n \to 0}f(n)-\frac{1}{12}\log(n)+\int^\infty_0 \frac{z\log(z^2)}{(e^{2\pi z}-1)}dz $$

Hence we have the limit

$$\lim_{n \to 0}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}-\frac{1}{12}\log(n) = \lim_{n \to 0}\log \frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2} e^{-3n^2/4}} = 0$$

Hence we see that

$$C = 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz $$

Finally we have

$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$

$$f(n) =-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz-\log(n^2)\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)\\+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$

Also we have

$$\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz = \frac{1}{24}$$

That simplifies to

$$f(n)=-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz+2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$

Take the limit $n \to \infty $

$$2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz = \frac{1}{12}-\log A$$

Now use that

$$
\begin{align}
2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz
&= 2\int^\infty_0 \frac{z\log(z)}{e^{2\pi z}}\times \frac{1}{1-e^{-2\pi z}}dz\\
&= 2\sum_{n=0}^\infty \int^\infty_0 e^{-2\pi z(n+1)}z\log(z)\,dz\\
&= \sum_{n=1}^\infty \frac{\psi(2) − \log(2\pi)+\log(n)}{2\pi^2 n^2}\\
&=\frac{(\psi(2)-\log(2\pi))\zeta(2)+\zeta'(2)}{2\pi^2}\\
\end{align}
$$

Hence we conclude that

$$\zeta'(2) =(\log(2\pi)-\psi(2))\zeta(2) + 2\pi^2\left(\frac{1}{12}-\log A \right) = \zeta(2) (\log(2\pi)+\gamma-12 \log A)$$
 
Physics news on Phys.org
  • #62
Re: (AIT) Barnes G function

Relation to hurwitz zeta function


Prove that

$$\log G(z+1) - z \log \Gamma(z) = \zeta'(-1) - \zeta'(-1,z) $$

Start by the following

$$\zeta(s,z) = \frac{z^{-s}}{2}+\frac{z^{1-s}}{s-1}+2\int^\infty_0 \frac{\sin(s\arctan(x/z))}{(z^2+x^2)^{s/2}(e^{2\pi x}-1)}\,dx$$

Hence we have

$$\zeta'(-1,z) = -\frac{z\log(z)}{2}+\frac{z^2\log(z)}{2}-\frac{z^2}{4}+\int^\infty_0 \frac{x\log(x^2+z^2)+2z\arctan(x/z)}{(e^{2\pi x}-1)}\,dx$$

Now use that

$$\psi(z) = \log(z)-\frac{1}{2z}-2\int^\infty_0 \frac{x }{(z^2+x^2)(e^{2\pi x}-1)}dx$$

Which implies that

$$\int^\infty_0 \frac{2zx }{(z^2+x^2)(e^{2\pi x}-1)}dx=z\log(z)-\frac{1}{2}-z\psi(z)$$

By taking the integral

$$\int^\infty_0 \frac{x\log(x^2+z^2) -x\log(x^2)}{(e^{2\pi x}-1)}dx=\int^z_0x\log(x)\,dx-\int^z_0x\psi(x)\,dx-\frac{z}{2}$$

Which simplifies to

$$\int^\infty_0 \frac{x\log(x^2+z^2) }{(e^{2\pi x}-1)}dx=\zeta'(-1)-\frac{z^2}{4}+\frac{1}{2} z^2 \log(z)-z\log\Gamma(z)+\int^z_0\log\Gamma(x)\,dx-\frac{z}{2}$$

Also we have

$$2\int^\infty_0 \frac{x}{(x^2+z^2)(e^{2\pi x}-1)}dx=\log(z)-\frac{1}{2z}-\psi(z)$$

By integration we have

$$2\int^\infty_0 \frac{\arctan(x/z)}{(e^{2\pi x}-1)}dx=z+\frac{\log(z)}{2}-z \log(z)+\log\Gamma(z)+C$$

Let $z \to 1$ to evaluate the constant

$$2\int^\infty_0 \frac{\arctan(x/z)}{(e^{2\pi x}-1)}dx=z+\frac{\log(z)}{2}-z \log(z)+\log\Gamma(z)-\frac{1}{2}\log(2\pi)$$

Multiply by $z$

$$2\int^\infty_0 \frac{z\arctan(x/z)}{(e^{2\pi x}-1)}dx=z^2+\frac{z\log(z)}{2}-z^2 \log(z)+z\log\Gamma(z)-\frac{z}{2}\log(2\pi)$$

Substitute both integrals our formula

$$\zeta'(-1,z) =-\frac{z\log(z)}{2}+\frac{z^2\log(z)}{2}-\frac{z^2}{4}+z^2+\frac{z\log(z)}{2}-z^2 \log(z)+z\log\Gamma(z)\\-\frac{z}{2}\log(2\pi)+\zeta'(-1)-\frac{z^2}{4}+\frac{1}{2} z^2 \log(z)-z\log\Gamma(z)+\int^z_0\log\Gamma(x)\,dx-\frac{z}{2}$$

Which reduces to

$$\int_{0}^{z} \log \Gamma(x) \, \mathrm dx = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} - \zeta^{'}(-1) + \zeta^{'}(-1,z)$$

We also showed that

$$\int_{0}^{z} \log \Gamma(x) \, \mathrm dx = \frac{z}{2} \log (2 \pi) + \frac{z(1-z)}{2} + z \log \Gamma(z) - \log G(z+1)$$

By equating the equations we get our result.

Prove that


$$\zeta'(-1) = \frac{1}{12}-\log A$$

Start by

$$\zeta(s) = \lim_{m \to \infty} \left( \sum_{k=1}^{m} k^{-s} - \frac{m^{1-s}}{1-s} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} \right) \ , \ \text{Re}(s) >-3.$$

Differentiate with respect to $s$

$$\zeta'(s) = \lim_{m \to \infty} \left(- \sum_{k=1}^{m} k^{-s}\log(k) - \frac{m^{1-s}}{(1-s)^2} +\frac{m^{1-s}}{1-s}\log(m)+\frac{m^{-s}}{2}\log(m)\\ + \frac{m^{-s-1}}{12}-\frac{m^{-s-1}}{12}\log(m)\right) $$

Now let $s \to -1$

$$\zeta'(-1) = \lim_{m \to \infty} \left(- \sum_{k=1}^{m} k\log(k) - \frac{m^{2}}{4} +\frac{m^{2}}{2}\log(m)+\frac{m}{2}\log(m)\\ + \frac{1}{12}-\frac{1}{12}\log(m)\right) $$

Take the exponential of both sides

$$e^{\zeta'(-1)}= e^{1/12}\lim_{m \to \infty} \frac{m^{m^2/2+m/2-1/12} e^{-m^2/4}}{ e^{\sum_{k=1}^{m} k\log(k)}} = e^{1/12}\lim_{m \to \infty} \frac{m^{m^2/2+m/2-1/12} e^{-m^2/4}}{ H(m+1)} = \frac{ e^{1/12}}{A} $$

We conclude that

$$\zeta'(-1) = \frac{1}{12}-\log A$$

Prove that

$$G\left(\frac{1}{2}\right) = 2^{1/24} \pi^{-1/4}e^{1/8}A^{-3/2}$$

We know that

$$\log G(z)+ \log \Gamma(z)- z \log \Gamma(z) = \zeta'(-1) - \zeta'(-1,z) $$

Note that

$$\zeta \left(s, \frac{1}{2} \right) = (2^s-1)\zeta(s)$$

Which implies that

$$\zeta' \left(-1, \frac{1}{2} \right) = \frac{\log(2)}{2}\zeta(-1)-\frac{1}{2}\zeta'(-1)$$

Hence we have

$$\log G\left(\frac{1}{2} \right)+ \frac{1}{2}\log \Gamma\left(\frac{1}{2} \right)= \frac{3}{2}\zeta'(-1)-\frac{\log(2)}{2}\zeta(-1) $$

Using that we have

$$G\left(\frac{1}{2}\right) = 2^{1/24}\pi^{-1/4}e^{\frac{3}{2}\zeta'(-1)}$$

Note that

$$\zeta(-1) = -\frac{1}{12}$$

This can be proved by the functional equation of the zeta function.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 17 ·
Replies
17
Views
8K
  • · Replies 13 ·
Replies
13
Views
3K