What Are Advanced Integration Techniques in Mathematics?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    advanced Integration
Click For Summary

Discussion Overview

The discussion revolves around advanced integration techniques in mathematics, focusing on methods such as differentiation under the integral sign and hyperbolic integration. Participants explore various problems and approaches, sharing insights and examples related to the application of these techniques in solving complex integrals.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant introduces the concept of differentiation under the integral sign, providing a specific example involving the integral of a function with a logarithm in the denominator.
  • Another participant continues the discussion on differentiation under the integral sign, presenting a new integral problem and discussing the challenges in identifying the appropriate function of two variables to differentiate.
  • A further post elaborates on the integral of sine over x, noting the necessity of introducing an exponential factor for convergence and detailing the steps taken to derive the result.
  • Hyperbolic integration is introduced, with a participant discussing the relationship between hyperbolic and trigonometric functions, and how this relationship can simplify certain integration problems.
  • Participants express the need for insight and creativity in selecting functions for differentiation, indicating that trial and error may be necessary to find suitable forms.

Areas of Agreement / Disagreement

There is no consensus on the best methods for all integration problems, as participants present various techniques and examples, indicating that multiple approaches may exist for solving similar integrals.

Contextual Notes

Some participants note the importance of a solid understanding of complex variables and special functions, suggesting that assumptions about background knowledge may affect the discussion.

Who May Find This Useful

This discussion may be useful for students and practitioners in mathematics, engineering, and physics who are interested in advanced integration techniques and their applications.

  • #61
Re: (AIT) Barnes G function

Relation to Hyperfactorial function


Prove for $n$ is a positive integer

$$G(n+1) = \frac{(N!)^n}{H(n)}$$

Where $H(n)$ is the hyperfactorial function

$$H(n) = \prod^n_{k=1}k^k$$

proof

We can prove it by induction for $n=0$ we have, $G(1)=1$,

suppose that

$$G(n) = \frac{\Gamma(n)^{n-1}}{H(n-1)}$$

we want to find

$$G(n+1) = \Gamma(n)G(n) = \Gamma(n) \frac{\Gamma(n)^{n-1}}{H(n-1)}$$

Notice that

$$H(n-1) = \prod^{n-1}k^k = \frac{\prod^{n}k^k}{n^n} = \frac{H(n)}{n^n }$$

We deduce that

$$G(n+1) = \Gamma(n)G(n) = \frac{\Gamma(n)^{n}\times n^n}{H(n)} = \frac{(N!)^n}{H(n)}$$

A related constant


We define the Glaisher-Kinkelin constant as

$$A = \lim_{n \to \infty}\frac{H(n)}{n^{n^2/2+n/2+1/12}e^{-n^2/4}}$$

Prove that

$$\lim_{n \to \infty}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} = \frac{e^{1/12}}{A}$$

proof

From the previous result we have

$$\lim_{n \to \infty}\frac{(N!)^n}{H(n)(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$

Now use the Stirling approximation

$$(N!)^n \sim (2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}$$

Hence we deduce that

$$\lim_{n \to \infty}\frac{(2\pi)^{n/2}n^{n^2+n/2}e^{-n^2+1/12}}{H(n)}\times\frac{1}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}$$

By simplifications we have

$$e^{1/12}\lim_{n \to \infty}\frac{n^{n^2/2+n/2+1/12}e^{-n^2/4}}{H(n)} = \frac{e^{1/12}}{A}$$

Exercise

$$\zeta'(2) = \frac{\pi^2}{6}\left(\log(2\pi)+\gamma-12\log A \right)$$

We already proved that

$$\log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right] \sim \frac{1}{12}-\log A$$

Let the following

$$f(n) = \log \left[\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$

Use the series representation of the Barnes functions

$$f(n) = \log \left[ \frac{(2\pi)^{n/2}\exp\left(-\frac{n+n^2(1+\gamma)}{2}\right)\prod_{k=1}^{\infty}\left\{\left(1+\frac{n}{k} \right)^k\exp\left(\frac{n^2}{2k}-n\right) \right\}}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}} \right]$$

Which reduces to

$$f(n) = -\frac{n+n^2(1+\gamma)}{2}+\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n \right\}\\ -\left( \frac{n^2}{2}-\frac{1}{12}\right)\log(n)+\frac{3n^2}{4}$$

Differentiate with respect to $n$

$$f'(n) = -\frac{1}{2}-n-\gamma n+n\psi(n)+\gamma n+1-n\log(n)-\frac{n}{2}+\frac{1}{12n}+\frac{3n}{2}$$

Note that we already showed that

$$\frac{d}{dn}\sum^\infty_{k=1}\left\{k \log \left(1+\frac{n}{k} \right)+\frac{n^2}{2k}-n\right\}= n\psi(n)+\gamma n+1$$

By simplifications we have

$$f'(n) = n\psi(n)-n\log(n)+\frac{1}{12n}+\frac{1}{2}$$

Now use that

$$\psi(n) = \log(n)-\frac{1}{2n}-2\int^\infty_0 \frac{z dz}{(n^2+z^2)(e^{2\pi z}-1)}dz$$

Hence we deduce that

$$f'(n) =-2\int^\infty_0 \frac{nz dz}{(n^2+z^2)(e^{2\pi z}-1)}dz+\frac{1}{12n}$$

Integrate with respect to $n$

$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+C$$

Take the limit $n \to 0$

$$C = \lim_{n \to 0}f(n)-\frac{1}{12}\log(n)+\int^\infty_0 \frac{z\log(z^2)}{(e^{2\pi z}-1)}dz $$

Hence we have the limit

$$\lim_{n \to 0}\frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2-1/12} e^{-3n^2/4}}-\frac{1}{12}\log(n) = \lim_{n \to 0}\log \frac{G(n+1)}{(2\pi)^{n/2}n^{n^2/2} e^{-3n^2/4}} = 0$$

Hence we see that

$$C = 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz $$

Finally we have

$$f(n) =-\int^\infty_0 \frac{z\log(n^2+z^2)}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$

$$f(n) =-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz-\log(n^2)\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz+\frac{1}{12}\log(n)\\+ 2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$

Also we have

$$\int^\infty_0 \frac{z}{(e^{2\pi z}-1)}dz = \frac{1}{24}$$

That simplifies to

$$f(n)=-\int^\infty_0 \frac{z\log\left(1+\frac{z^2}{n^2} \right)}{(e^{2\pi z}-1)}dz+2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz$$

Take the limit $n \to \infty $

$$2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz = \frac{1}{12}-\log A$$

Now use that

$$
\begin{align}
2\int^\infty_0 \frac{z\log(z)}{(e^{2\pi z}-1)}dz
&= 2\int^\infty_0 \frac{z\log(z)}{e^{2\pi z}}\times \frac{1}{1-e^{-2\pi z}}dz\\
&= 2\sum_{n=0}^\infty \int^\infty_0 e^{-2\pi z(n+1)}z\log(z)\,dz\\
&= \sum_{n=1}^\infty \frac{\psi(2) − \log(2\pi)+\log(n)}{2\pi^2 n^2}\\
&=\frac{(\psi(2)-\log(2\pi))\zeta(2)+\zeta'(2)}{2\pi^2}\\
\end{align}
$$

Hence we conclude that

$$\zeta'(2) =(\log(2\pi)-\psi(2))\zeta(2) + 2\pi^2\left(\frac{1}{12}-\log A \right) = \zeta(2) (\log(2\pi)+\gamma-12 \log A)$$
 
Physics news on Phys.org
  • #62
Re: (AIT) Barnes G function

Relation to hurwitz zeta function


Prove that

$$\log G(z+1) - z \log \Gamma(z) = \zeta'(-1) - \zeta'(-1,z) $$

Start by the following

$$\zeta(s,z) = \frac{z^{-s}}{2}+\frac{z^{1-s}}{s-1}+2\int^\infty_0 \frac{\sin(s\arctan(x/z))}{(z^2+x^2)^{s/2}(e^{2\pi x}-1)}\,dx$$

Hence we have

$$\zeta'(-1,z) = -\frac{z\log(z)}{2}+\frac{z^2\log(z)}{2}-\frac{z^2}{4}+\int^\infty_0 \frac{x\log(x^2+z^2)+2z\arctan(x/z)}{(e^{2\pi x}-1)}\,dx$$

Now use that

$$\psi(z) = \log(z)-\frac{1}{2z}-2\int^\infty_0 \frac{x }{(z^2+x^2)(e^{2\pi x}-1)}dx$$

Which implies that

$$\int^\infty_0 \frac{2zx }{(z^2+x^2)(e^{2\pi x}-1)}dx=z\log(z)-\frac{1}{2}-z\psi(z)$$

By taking the integral

$$\int^\infty_0 \frac{x\log(x^2+z^2) -x\log(x^2)}{(e^{2\pi x}-1)}dx=\int^z_0x\log(x)\,dx-\int^z_0x\psi(x)\,dx-\frac{z}{2}$$

Which simplifies to

$$\int^\infty_0 \frac{x\log(x^2+z^2) }{(e^{2\pi x}-1)}dx=\zeta'(-1)-\frac{z^2}{4}+\frac{1}{2} z^2 \log(z)-z\log\Gamma(z)+\int^z_0\log\Gamma(x)\,dx-\frac{z}{2}$$

Also we have

$$2\int^\infty_0 \frac{x}{(x^2+z^2)(e^{2\pi x}-1)}dx=\log(z)-\frac{1}{2z}-\psi(z)$$

By integration we have

$$2\int^\infty_0 \frac{\arctan(x/z)}{(e^{2\pi x}-1)}dx=z+\frac{\log(z)}{2}-z \log(z)+\log\Gamma(z)+C$$

Let $z \to 1$ to evaluate the constant

$$2\int^\infty_0 \frac{\arctan(x/z)}{(e^{2\pi x}-1)}dx=z+\frac{\log(z)}{2}-z \log(z)+\log\Gamma(z)-\frac{1}{2}\log(2\pi)$$

Multiply by $z$

$$2\int^\infty_0 \frac{z\arctan(x/z)}{(e^{2\pi x}-1)}dx=z^2+\frac{z\log(z)}{2}-z^2 \log(z)+z\log\Gamma(z)-\frac{z}{2}\log(2\pi)$$

Substitute both integrals our formula

$$\zeta'(-1,z) =-\frac{z\log(z)}{2}+\frac{z^2\log(z)}{2}-\frac{z^2}{4}+z^2+\frac{z\log(z)}{2}-z^2 \log(z)+z\log\Gamma(z)\\-\frac{z}{2}\log(2\pi)+\zeta'(-1)-\frac{z^2}{4}+\frac{1}{2} z^2 \log(z)-z\log\Gamma(z)+\int^z_0\log\Gamma(x)\,dx-\frac{z}{2}$$

Which reduces to

$$\int_{0}^{z} \log \Gamma(x) \, \mathrm dx = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} - \zeta^{'}(-1) + \zeta^{'}(-1,z)$$

We also showed that

$$\int_{0}^{z} \log \Gamma(x) \, \mathrm dx = \frac{z}{2} \log (2 \pi) + \frac{z(1-z)}{2} + z \log \Gamma(z) - \log G(z+1)$$

By equating the equations we get our result.

Prove that


$$\zeta'(-1) = \frac{1}{12}-\log A$$

Start by

$$\zeta(s) = \lim_{m \to \infty} \left( \sum_{k=1}^{m} k^{-s} - \frac{m^{1-s}}{1-s} - \frac{m^{-s}}{2} + \frac{sm^{-s-1}}{12} \right) \ , \ \text{Re}(s) >-3.$$

Differentiate with respect to $s$

$$\zeta'(s) = \lim_{m \to \infty} \left(- \sum_{k=1}^{m} k^{-s}\log(k) - \frac{m^{1-s}}{(1-s)^2} +\frac{m^{1-s}}{1-s}\log(m)+\frac{m^{-s}}{2}\log(m)\\ + \frac{m^{-s-1}}{12}-\frac{m^{-s-1}}{12}\log(m)\right) $$

Now let $s \to -1$

$$\zeta'(-1) = \lim_{m \to \infty} \left(- \sum_{k=1}^{m} k\log(k) - \frac{m^{2}}{4} +\frac{m^{2}}{2}\log(m)+\frac{m}{2}\log(m)\\ + \frac{1}{12}-\frac{1}{12}\log(m)\right) $$

Take the exponential of both sides

$$e^{\zeta'(-1)}= e^{1/12}\lim_{m \to \infty} \frac{m^{m^2/2+m/2-1/12} e^{-m^2/4}}{ e^{\sum_{k=1}^{m} k\log(k)}} = e^{1/12}\lim_{m \to \infty} \frac{m^{m^2/2+m/2-1/12} e^{-m^2/4}}{ H(m+1)} = \frac{ e^{1/12}}{A} $$

We conclude that

$$\zeta'(-1) = \frac{1}{12}-\log A$$

Prove that

$$G\left(\frac{1}{2}\right) = 2^{1/24} \pi^{-1/4}e^{1/8}A^{-3/2}$$

We know that

$$\log G(z)+ \log \Gamma(z)- z \log \Gamma(z) = \zeta'(-1) - \zeta'(-1,z) $$

Note that

$$\zeta \left(s, \frac{1}{2} \right) = (2^s-1)\zeta(s)$$

Which implies that

$$\zeta' \left(-1, \frac{1}{2} \right) = \frac{\log(2)}{2}\zeta(-1)-\frac{1}{2}\zeta'(-1)$$

Hence we have

$$\log G\left(\frac{1}{2} \right)+ \frac{1}{2}\log \Gamma\left(\frac{1}{2} \right)= \frac{3}{2}\zeta'(-1)-\frac{\log(2)}{2}\zeta(-1) $$

Using that we have

$$G\left(\frac{1}{2}\right) = 2^{1/24}\pi^{-1/4}e^{\frac{3}{2}\zeta'(-1)}$$

Note that

$$\zeta(-1) = -\frac{1}{12}$$

This can be proved by the functional equation of the zeta function.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
21
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K