- #1
LightKage
- 3
- 0
I am trying to learn about Holonomy groups. My objective is to read Submanifolds and Holonomy from Berndt, Olmos and Console. I know I need a lot of prerequisites before understanding that book. So I started first reading Lee's book of Smooth Manifolds (I readed it until the Submanifolds Chapter and then I jumped to Tensor Theory). After that I started reading Lee's book of Riemannian Geometry (I have nearly completed it, I am in the Submanifolds Chapter).
Until now, I have found all the concepts I learned from Lee's Riemannian Book very algebraic. I mean, I still don't understand the geometric value of the riemannian curvature endomorphism, the curvature tensor or the scalar curvature.
I have tried now to pick a book about holonomy. I took from the library Joyce book:Riemannian holonomy groups and calibrated geometry. It had different definitions about connections and was very difficult to follow. I tried on Riemannian Geometry and Holonomy Groups, also difficult and different definitions.
So my question is what do you suggest guys on reading now to try to understand holonomy? Maybe I need to read a more advanced book on riemannian geometry than Lee's book. I was thinking maybe on Spivak vol 1 & vol 2 or Foundations of Differential Geometry of Kobayashi and Nomizu. Or is there any book that explains about holonomy with the concepts I have learned until now?
Thanks in advanced,
Sergio
Until now, I have found all the concepts I learned from Lee's Riemannian Book very algebraic. I mean, I still don't understand the geometric value of the riemannian curvature endomorphism, the curvature tensor or the scalar curvature.
I have tried now to pick a book about holonomy. I took from the library Joyce book:Riemannian holonomy groups and calibrated geometry. It had different definitions about connections and was very difficult to follow. I tried on Riemannian Geometry and Holonomy Groups, also difficult and different definitions.
So my question is what do you suggest guys on reading now to try to understand holonomy? Maybe I need to read a more advanced book on riemannian geometry than Lee's book. I was thinking maybe on Spivak vol 1 & vol 2 or Foundations of Differential Geometry of Kobayashi and Nomizu. Or is there any book that explains about holonomy with the concepts I have learned until now?
Thanks in advanced,
Sergio