What are the coordinates of the vertex for the graph of f(x) = 3x^2 + 6x - 9?

Click For Summary
SUMMARY

The vertex of the quadratic function f(x) = 3x² + 6x - 9 is located at the coordinates (-1, -12). The x-coordinate of the vertex is determined using the formula x = -b / 2a, yielding x = -1. The y-coordinate is calculated by substituting x = -1 back into the function, resulting in f(-1) = -12. The axis of symmetry is the vertical line x = -1, and the y-intercept is -9.

PREREQUISITES
  • Understanding of quadratic functions
  • Familiarity with the vertex formula for parabolas
  • Ability to complete the square
  • Basic algebraic manipulation skills
NEXT STEPS
  • Learn how to derive the vertex of a quadratic function using the completing the square method
  • Study the properties of parabolas, including axis of symmetry and intercepts
  • Explore the implications of the vertex form of a quadratic equation
  • Practice solving quadratic equations using various methods, including factoring and the quadratic formula
USEFUL FOR

Students studying algebra, educators teaching quadratic functions, and anyone looking to deepen their understanding of graphing parabolas.

Peter G.
Messages
439
Reaction score
0
Hi :smile:

So: Let f (x) = 3x2 + 6x - 9

For the graph of f:

a) Write down the coordinate of the vertex
b) Write down the equation of the axis of symmetry
c) Write down the the y intercept
iv) Find both x intercepts

My answers:
a) For a I managed to find the x coordinate of the vertex by:

x = -b / 2a
x = -6 / 6
x = -1

However, I am having difficulties with the y coordinates. This is what I tried:

c-b2/4a, hence: -9 - 36 = 45 / 12

But I am pretty sure I went wrong somewhere!

b) x = -1

c) The y intercept: - 9
d) The x's I factorized and got the answers, so my real problem is with the y coordinate of the vertex I guess!

Thanks,
Peter G.
 
Physics news on Phys.org
Peter G. said:
a) For a I managed to find the x coordinate of the vertex by:

x = -b / 2a
x = -6 / 6
x = -1

However, I am having difficulties with the y coordinates. This is what I tried:

c-b2/4a, hence: -9 - 36 = 45 / 12
Yep, it's wrong. The 4a part doesn't go under the c - b2, just the b2. It should be
c - \frac{b^2}{4a} = -9 - \frac{6^2}{4 \cdot 3} = -9 - \frac{36}{12} = ...

Anyway, why use this formula? I would just plug in the x-value into the original equation f(x) = 3x2 + 6x - 9 and find the y-coordinate:
f(-1) = 3(-1)^2 + 6(-1) - 9 = ...
 
Peter G. said:
Hi :smile:

So: Let f (x) = 3x2 + 6x - 9

For the graph of f:

a) Write down the coordinate of the vertex
b) Write down the equation of the axis of symmetry
c) Write down the the y intercept
iv) Find both x intercepts

My answers:
a) For a I managed to find the x coordinate of the vertex by:

x = -b / 2a
x = -6 / 6
x = -1

However, I am having difficulties with the y coordinates. This is what I tried:

c-b2/4a, hence: -9 - 36 = 45 / 12

But I am pretty sure I went wrong somewhere!
After you have found the x-coordinate of the vertex, just evaluate the function at that number.

f(-1) = 3(-1)2 + 6(-1) - 9 = 3 - 6 - 9 = -12.

Also, rather than memorize a formula for the coordinates that you will probably forget in time, it's probably better to find the vertex by completing the square.

y = 3x2 + 6x - 9 = 3(x2 + 2x) - 9 = 3(x2 + 2x + 1) - 9 - 3 = 3(x + 1)2 - 12

This shows that the vertex of the standard parabola y = x2 has been shifted left by 1 unit, and shifted down by 12 units, which puts the vertex of the transformed function at (-1, -12).
Peter G. said:
b) x = -1

c) The y intercept: - 9
d) The x's I factorized and got the answers, so my real problem is with the y coordinate of the vertex I guess!

Thanks,
Peter G.
 
Thanks a lot guys!

Firstly, thanks for the formula I had wrong, and, I ended up realizing how stupid I was for not sub'ing the x value into the equation :shy:
 
Peter G. said:
Hi :smile:

So: Let f (x) = 3x2 + 6x - 9

For the graph of f:

a) Write down the coordinate of the vertex
b) Write down the equation of the axis of symmetry
c) Write down the the y intercept
iv) Find both x intercepts

My answers:
a) For a I managed to find the x coordinate of the vertex by:

x = -b / 2a
x = -6 / 6
x = -1

However, I am having difficulties with the y coordinates. This is what I tried:

c-b2/4a, hence: -9 - 36 = 45 / 12

But I am pretty sure I went wrong somewhere!
It is better to think about what you are doing than just apply memorized formulas, especially here where you have mis-memorized the formula.
Since you know that x= -1, just use the original formula to find y= 3(-1)^2+ 6(-1)- 9

b) x = -1

c) The y intercept: - 9
d) The x's I factorized and got the answers, so my real problem is with the y coordinate of the vertex I guess!

Thanks,
Peter G.
Do you know where formulas you cite for the x and y coordinates of the vertex come from? Completing the square:
ax^2+ bx+ c= a(x^2+ (b/a)x )+ c= a(x^2+ (b/a)x+ (b^2/4a)- (b^2/4a))+ c
Taking that -(b^2/4a) out of the parentheses, it is multiplied by that leading "a":
= a(x^2+ (b/a)x+ (b^2/4a)+ c- b^2/4= a(x+ b/2a)^2+ c- b^2/4[/itex]<br /> <br /> When x= -b/2a, y= (0)^2+ c- b^2/4a. Since a square is never less than 0, for any other value of x, y is either larger than that (if a&gt; 0) or less (if a&lt; 0). In either case, x= -b/2a, y= c- b^2/4 are the x and y components of the vertex. (And notice that y is NOT c-b^2/4a
 
Hi, sorry, another doubt arose... :mad:

For: y = 3x - 5

Find y when: x = 0, ± 1, ± 2x

So, for 0 and ± 1 I managed to do it, but I didn't understand the 2x :confused:

In addition to that, it then asks us to discuss y as x moves towards infinity and as x moves towards negative infinity. They expect me to say that, for positive infinity, it gets infinitely bigger but never smaller than -4 and for negative infinity I am unsure...
 
If we define g(x) = 3x - 5, we can see that:
g(0) = 30 - 5 = 1 - 5 = -4
g(1) = 31 - 5 = 3 - 5 = -2
g(-1) = 3-1 - 5 = 1/3 - 5 = -14/3

Then what is g(2x)? g(-2x)?

As x gets larger and larger, what does 3x do?
As x gets more and more negative, what does 3x do? To answer this, it might be helpful to calculate a few more values of g(x) for negative values of x.
 
Hi Mark 44, thank you for your patience :smile:

g(2x) would be for when x = 2 for example, 34 - 5 = 76?

And, for when x is positive, as it increases, it keeps growing and growing.
As for when the values of negative x get bigger and bigger, 3x keep getting smaller and smaller
 
Peter G. said:
In addition to that, it then asks us to discuss y as x moves towards infinity and as x moves towards negative infinity. They expect me to say that, for positive infinity, it gets infinitely bigger but never smaller than -4 and for negative infinity I am unsure...

It sounds like you are being asked two things:
- as the x-values approaches positive infinity, what do the y-values approach?
- as the x-values approaches negative infinity, what do the y-values approach?

I think you already solve the first part (when x -> +∞, y -> +∞). The "never smaller than -4" has nothing to do with the first part, however. For the second part, try plugging in values for x (x = -1, x = -10, x = -100,...) and see what the corresponding y-values are.

EDIT: didn't see Mark44's post. Also:
Peter G. said:
As for when the values of negative x get bigger and bigger, 3x keep getting smaller and smaller
You need to be more specific. Are the corresponding y-values getting larger and larger in the negative direction? Or they "leveling" off, getting close to a specific value?
 
  • #10
No, g(2x) is different from g(2), which is 32 - 5 = 9 - 5 = 4.
When you evaluate g(2x) you will get an expression that involves x.

Peter G. said:
As for when the values of negative x get bigger and bigger, 3x keep getting smaller and smaller
Can you be more specific? "Smaller and smaller" could mean more and more negative.
 
  • #11
Ok, for the 2x, I am still a bit confused. Would it be then: 32x - 5
= (32)x - 5
= 9x - 5?

And, for what I meant with my statement: So, as the value of x gets increasingly smaller: e.g: -1, -2, -5, 3x decreases in magnitude: 1/3, 1/9, 1/243. When 5 is subtracted from them, they start to level off, getting closer and closer to 5 but never quite reaching it?
 
  • #12
Peter G. said:
Ok, for the 2x, I am still a bit confused. Would it be then: 32x - 5
= (32)x - 5
= 9x - 5?
Or you could just stop at 32x - 5
Peter G. said:
And, for what I meant with my statement: So, as the value of x gets increasingly smaller: e.g: -1, -2, -5, 3x decreases in magnitude: 1/3, 1/9, 1/243. When 5 is subtracted from them, they start to level off, getting closer and closer to 5 but never quite reaching it?
A better way to say this is that as x gets more and more negative, 3x gets closer to 0, but remaining positive. Subtracting 5 results in number that are getting closer to -5 (your earlier post had -4, which might have been a typo), but always staying above -5.
 
  • #13
Ok, cool. Thanks!

Once again, thanks to all of you who contributed. You guys are great! :biggrin:
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
8K
Replies
21
Views
4K
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K