What Are the Fascinating Results of These Integral Explorations?

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary

Discussion Overview

The discussion revolves around various integral calculations and explorations, focusing on specific integrals and their evaluations. Participants share different methods and approaches to compute these integrals, which include both definite and improper integrals. The scope encompasses mathematical reasoning and technical explanations related to integral calculus.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents a list of integrals for exploration, including $\int_{0}^{1}\frac{\sin(\ln x)}{\ln x}dx$ and $\int_{0}^{\infty}e^{- \left( x^2+\dfrac{1}{x^2}\right)}dx$.
  • Another participant evaluates $\int_{0}^{1} \frac{\sin \ln x}{\ln x}\ dx$ and concludes it equals $\frac{\pi}{4}$ using a Laplace transform approach.
  • A different participant provides a substitution method for $\int_{0}^{1}\frac{\arctan(x)}{1+x}dx$, arriving at $\frac{\pi}{8}\ln(2)$ through integration techniques.
  • Another approach to $\int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$ is shared, leading to the conclusion that it equals $\pi\ln(2)$, using symmetry and properties of logarithmic integrals.
  • One participant introduces a parameterized integral $I(\lambda)=\int_{0}^{\infty}\frac{\ln(1+\lambda x^2)}{1+x^2}dx$ and derives its value for $\lambda=1$ as $\pi \ln(2)$.
  • Another participant discusses the integral $\int_{0}^{\infty} e^{-(x^{2}+\frac{1}{x^{2}})}dx$, presenting a differential equation approach that leads to the result $\frac{\sqrt{\pi}}{2} e^{-2}$.
  • Several participants express enthusiasm for the methods used, with comments on the creativity of the approaches.
  • Finally, a participant evaluates the integral $\int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta$, concluding it equals $2\pi$ through differentiation under the integral sign.

Areas of Agreement / Disagreement

Participants present multiple methods and results for the integrals discussed, with no consensus reached on the correctness of each method. Each approach is treated as a valid contribution, and the discussion remains open-ended regarding the best techniques or results.

Contextual Notes

Some approaches depend on specific substitutions or transformations that may not be universally applicable. The discussion includes various assumptions and conditions that are not fully resolved, particularly regarding the convergence of integrals and the validity of certain steps in the calculations.

sbhatnagar
Messages
87
Reaction score
0
integrals (lots of them!)

1. $\displaystyle \int_{0}^{1}\frac{\sin(\ln x)}{\ln x}dx$

2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$

3. $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

4. $\displaystyle \int_{0}^{\infty}e^{- \left( x^2+\dfrac{1}{x^2}\right)}dx$

5. $\displaystyle \int_{0}^{2\pi}e^{\cos \theta} \cos(\sin \theta) d\theta$
 
Last edited:
Physics news on Phys.org
Re: integrals (lots of them!)

Remembering that is...

$\displaystyle \mathcal{L}\{\frac{sin t}{t}\}= \int_{s}^{\infty} \frac{du}{1+u^{2}}= \cot^{-1} s$ (1)

... we obtain...

$\displaystyle \int_{0}^{1} \frac{\sin \ln x}{\ln x}\ dx= \int_{-\infty}^{0}\frac{\sin t}{t}\ e^{t}\ dt = \int_{0}^{\infty}\frac{\sin t}{t}\ e^{-t}\ dt = \cot^{-1} 1= \frac{\pi}{4}$ (2)

Kind regards

$\chi$ $\sigma$
 
Re: integrals (lots of them!)

Keep the good stuff coming!

sbhatnagar said:
2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$
Sub $x = \tan{t}$, we get

$$ \displaystyle \begin{aligned}I & = \int_{0}^{1}\frac{ \arctan{x}}{1+x}\;{dx} \\& = \int_{0}^{\pi/4}\frac{t \sec{t}}{\cos{t}+\sin{t}}\;{dt}.\end{aligned}$$

Put $t \mapsto \frac{\pi}{4}-t$ and add them to get:

$$\displaystyle \begin{aligned} 2I & = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{\sec{t}}{\cos{t}+\sin{t}}\;{dt} \\& = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{\sec^2{t}}{1+\tan{t}}\;{dt} \\& = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{(1+\tan{t})'}{1+\tan{t}}\;{dt} \\& = \frac{\pi}{4}\ln\bigg|1+\tan{t}\bigg|_{0}^{\pi/4} \\& = \frac{\pi}{4}\ln(2). \end{aligned}$$

Therefore $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}\;{dx} = \frac{\pi}{8}\ln(2).$

3. $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

Sub $x = \tan(\varphi)$ then put $\varphi \mapsto \frac{\pi}{2}-\varphi$, we get$$ \displaystyle \begin{aligned} I & = \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx} \\& = -2\int_{0}^{\pi/2}\ln(\cos\varphi)\;{d\varphi} \\& = -2\int_{0}^{\pi/2}\ln(\sin\varphi)\;{d\varphi}. \end{aligned}$$Adding the second two integrals we get $$ \displaystyle \begin{aligned}2I & = -2\int_{0}^{\pi/2}\ln\left(\frac{1}{2}\sin 2 \varphi\right)\;{d\varphi} \\& =\pi\ln(2)-2\int_{0}^{\pi/2}\ln(\sin 2\varphi)\;{d\varphi} \\& = \pi\ln(2)-\int_{0}^{\pi}\ln(\sin\varphi)\;{d\varphi} \\& = \pi\ln(2)-2\int_{0}^{\pi/2}\ln(\sin\varphi)\;{d\varphi} \\& = \pi\ln(2)+I.\end{aligned} $$Therefore $\displaystyle \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx} = \pi\ln(2).$
 
Last edited:
Re: integrals (lots of them!)

$\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

Here is my approach for the third one.

$\displaystyle I(\lambda)=\int_{0}^{\infty}\frac{\ln(1+\lambda x^2)}{1+x^2}dx$

$\displaystyle I'(\lambda)=\int_{0}^{\infty}\frac{x^2}{(1+\lambda x^2)(1+x^2)}dx=\frac{1}{1-\lambda}\int_{0}^{\infty}\frac{1}{1+\lambda x^2}dx+\frac{1}{\lambda-1}\int_{0}^{\infty}\frac{1}{1+x^2}dx$

$\displaystyle =\frac{\pi}{2(\lambda-1)}-\frac{\pi}{2\sqrt{\lambda}(\lambda-1)}=\frac{\pi}{2(\lambda+\sqrt{\lambda})}$

Integrating both side yields:

$\displaystyle I(\lambda)=\pi \ln(\sqrt{\lambda}+1)+C$

For $\lambda=0$ we have $C=0$.

$\displaystyle I(\lambda)=\pi \ln(\sqrt{\lambda}+1)$

Therefore

$\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=I(1)= \pi \ln(2)$

---------- Post added at 02:34 PM ---------- Previous post was at 02:11 PM ----------


$\displaystyle \int_{0}^{1}\frac{\sin( \ln x)}{\ln x}dx$
For the first one I did the following:

$\displaystyle I(\lambda)=\int_{0}^{1}\frac{\sin(\lambda \ln x)}{\ln x}dx$

$\displaystyle I'(\lambda)=\int_{0}^{1}\cos(\lambda \ln x)dx=\int_{-\infty}^{0}e^x \cos(\lambda x)dx$

$\displaystyle =\left[ \frac{e^x \{ \cos(\lambda x)+\lambda \sin(\lambda x)\}}{1+\lambda^2}\right]_{-\infty}^{0}=\frac{1}{1+\lambda^2}$

Integrate both sides:

$\displaystyle I(\lambda)=\arctan(\lambda)+C$

For $\lambda=0$ we have $C=0$. so

$\displaystyle I(\lambda)=\arctan(\lambda)$

Therefore

$\displaystyle \int_{0}^{1}\frac{\sin( \ln x)}{\ln x}dx=I(1)=\arctan(1)=\frac{\pi}{4}$
 
Last edited:
Re: integrals (lots of them!)

Let's define...

$\displaystyle \varphi(t)=\int_{0}^{\infty} e^{-(x^{2}+\frac{t^{2}}{x^{2}})}\ dx$ (1)

... and now we derive (1)...

$\displaystyle \varphi^{'}(t)=-2\ t\ \int_{0}^{\infty} \frac{1}{x^{2}}\ e^{-(x^{2}+\frac{t^{2}}{x^{2}})}\ dx$ (2)

Setting in (2) $\displaystyle \tau=\frac{t}{x}$ in some steps we obtain...

$\displaystyle \varphi^{'}(t)=-2\ \int_{0}^{\infty} e^{-(\tau^{2}+\frac{t^{2}}{\tau^{2}})}\ d \tau = -2\ \varphi(t)$ (3)

The (3) is an easily solvable ODE and, taking into account the well known result...

$\displaystyle \int_{0}^{\infty} e^{-x^{2}}\ dx = \frac{\sqrt{\pi}}{2}$ (4)

... we obtain...

$\displaystyle \varphi(t)= \frac{\sqrt{\pi}}{2}\ e^{-2\ t}$ (5)

Setting in (5) t=1 we finally obtain...

$\displaystyle \int_{0}^{\infty} e^{-(x^{2}+\frac{1}{x^{2}})}\ dx =\frac{\sqrt{\pi}}{2}\ e^{-2}$ (6)

Kind regards

$\chi$ $\sigma$
 
Last edited:
Re: integrals (lots of them!)

$\displaystyle \int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2} \right)}dx$

Yeah that's right. I also used the same technique. Here is another solution which amazed me:

$\displaystyle I=\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2} \right)}dx=\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2}-2 \right)-\displaystyle 2}dx=e^{-2}\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2}-2 \right)}dx$

Use the fact that $\displaystyle \int_{0}^{\infty}f \left(x^2+\frac{1}{x^2}-2\right)dx=\int_{0}^{\infty}f \left(x^2\right)dx$:

$\displaystyle I=e^{-2}\int_{0}^{\infty}e^{-x^2}dx=e^{-2}\frac{\sqrt{\pi}}{2}$
 
Re: integrals (lots of them!)

You guys took the term 'magic differentiation' to a whole new level! (Giggle)
 
Re: integrals (lots of them!)

Solution for 5.

$$ \int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta $$

$\displaystyle I(\phi)=\int_{0}^{2\pi}e^{\phi \cos \theta}\cos(\phi \sin \theta)d\theta$

$\displaystyle I'(\phi)=\int_{0}^{2\pi}e^{\phi \cos \theta}(\cos(\theta)\cos(\phi \sin \theta)-\sin(\theta)\sin(\phi \sin \theta))d\theta$

$\displaystyle =\frac{1}{\phi}\int_{0}^{2\pi}\frac{d}{d\theta}(e^{\phi\cos \theta} \sin(\phi \sin\theta))d\theta=\frac{1}{\phi}\int_{0}^{2\pi}d(e^{\phi\cos \theta} \sin(\phi \sin\theta))$

$\displaystyle =0$

Integrate both sides:

$\displaystyle I(\phi)=0+C$

When $\phi=0$ then $C=2\pi$.

Therefore

$\displaystyle I(\phi)=2\pi$

so

$\displaystyle \int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta =I(1)=2\pi $
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K