What Are the Fascinating Results of These Integral Explorations?

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary
SUMMARY

This discussion focuses on the evaluation of several complex integrals, specifically: $\displaystyle \int_{0}^{1}\frac{\sin(\ln x)}{\ln x}dx$, $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$, $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$, and $\displaystyle \int_{0}^{\infty}e^{-\left(x^2+\frac{1}{x^2}\right)}dx$. The results include $\frac{\pi}{4}$ for the first integral, $\frac{\pi}{8}\ln(2)$ for the second, $\pi\ln(2)$ for the third, and $\frac{\sqrt{\pi}}{2}e^{-2}$ for the fourth. Each integral was approached using various techniques, including substitution and differentiation under the integral sign.

PREREQUISITES
  • Understanding of integral calculus, particularly improper integrals.
  • Familiarity with trigonometric and logarithmic functions.
  • Knowledge of substitution techniques in integration.
  • Experience with differentiation under the integral sign.
NEXT STEPS
  • Explore advanced integration techniques such as contour integration.
  • Learn about the properties of the Gamma function and its relation to integrals.
  • Study the use of Laplace transforms in evaluating integrals.
  • Investigate the applications of integrals in solving differential equations.
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the evaluation of complex integrals and their applications in mathematical analysis.

sbhatnagar
Messages
87
Reaction score
0
integrals (lots of them!)

1. $\displaystyle \int_{0}^{1}\frac{\sin(\ln x)}{\ln x}dx$

2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$

3. $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

4. $\displaystyle \int_{0}^{\infty}e^{- \left( x^2+\dfrac{1}{x^2}\right)}dx$

5. $\displaystyle \int_{0}^{2\pi}e^{\cos \theta} \cos(\sin \theta) d\theta$
 
Last edited:
Physics news on Phys.org
Re: integrals (lots of them!)

Remembering that is...

$\displaystyle \mathcal{L}\{\frac{sin t}{t}\}= \int_{s}^{\infty} \frac{du}{1+u^{2}}= \cot^{-1} s$ (1)

... we obtain...

$\displaystyle \int_{0}^{1} \frac{\sin \ln x}{\ln x}\ dx= \int_{-\infty}^{0}\frac{\sin t}{t}\ e^{t}\ dt = \int_{0}^{\infty}\frac{\sin t}{t}\ e^{-t}\ dt = \cot^{-1} 1= \frac{\pi}{4}$ (2)

Kind regards

$\chi$ $\sigma$
 
Re: integrals (lots of them!)

Keep the good stuff coming!

sbhatnagar said:
2. $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}dx$
Sub $x = \tan{t}$, we get

$$ \displaystyle \begin{aligned}I & = \int_{0}^{1}\frac{ \arctan{x}}{1+x}\;{dx} \\& = \int_{0}^{\pi/4}\frac{t \sec{t}}{\cos{t}+\sin{t}}\;{dt}.\end{aligned}$$

Put $t \mapsto \frac{\pi}{4}-t$ and add them to get:

$$\displaystyle \begin{aligned} 2I & = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{\sec{t}}{\cos{t}+\sin{t}}\;{dt} \\& = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{\sec^2{t}}{1+\tan{t}}\;{dt} \\& = \frac{\pi}{4}\int_{0}^{\pi/4}\frac{(1+\tan{t})'}{1+\tan{t}}\;{dt} \\& = \frac{\pi}{4}\ln\bigg|1+\tan{t}\bigg|_{0}^{\pi/4} \\& = \frac{\pi}{4}\ln(2). \end{aligned}$$

Therefore $\displaystyle \int_{0}^{1}\frac{\arctan(x)}{1+x}\;{dx} = \frac{\pi}{8}\ln(2).$

3. $\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

Sub $x = \tan(\varphi)$ then put $\varphi \mapsto \frac{\pi}{2}-\varphi$, we get$$ \displaystyle \begin{aligned} I & = \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx} \\& = -2\int_{0}^{\pi/2}\ln(\cos\varphi)\;{d\varphi} \\& = -2\int_{0}^{\pi/2}\ln(\sin\varphi)\;{d\varphi}. \end{aligned}$$Adding the second two integrals we get $$ \displaystyle \begin{aligned}2I & = -2\int_{0}^{\pi/2}\ln\left(\frac{1}{2}\sin 2 \varphi\right)\;{d\varphi} \\& =\pi\ln(2)-2\int_{0}^{\pi/2}\ln(\sin 2\varphi)\;{d\varphi} \\& = \pi\ln(2)-\int_{0}^{\pi}\ln(\sin\varphi)\;{d\varphi} \\& = \pi\ln(2)-2\int_{0}^{\pi/2}\ln(\sin\varphi)\;{d\varphi} \\& = \pi\ln(2)+I.\end{aligned} $$Therefore $\displaystyle \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx} = \pi\ln(2).$
 
Last edited:
Re: integrals (lots of them!)

$\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx$

Here is my approach for the third one.

$\displaystyle I(\lambda)=\int_{0}^{\infty}\frac{\ln(1+\lambda x^2)}{1+x^2}dx$

$\displaystyle I'(\lambda)=\int_{0}^{\infty}\frac{x^2}{(1+\lambda x^2)(1+x^2)}dx=\frac{1}{1-\lambda}\int_{0}^{\infty}\frac{1}{1+\lambda x^2}dx+\frac{1}{\lambda-1}\int_{0}^{\infty}\frac{1}{1+x^2}dx$

$\displaystyle =\frac{\pi}{2(\lambda-1)}-\frac{\pi}{2\sqrt{\lambda}(\lambda-1)}=\frac{\pi}{2(\lambda+\sqrt{\lambda})}$

Integrating both side yields:

$\displaystyle I(\lambda)=\pi \ln(\sqrt{\lambda}+1)+C$

For $\lambda=0$ we have $C=0$.

$\displaystyle I(\lambda)=\pi \ln(\sqrt{\lambda}+1)$

Therefore

$\displaystyle \int_{0}^{\infty}\frac{\ln(1+x^2)}{1+x^2}dx=I(1)= \pi \ln(2)$

---------- Post added at 02:34 PM ---------- Previous post was at 02:11 PM ----------


$\displaystyle \int_{0}^{1}\frac{\sin( \ln x)}{\ln x}dx$
For the first one I did the following:

$\displaystyle I(\lambda)=\int_{0}^{1}\frac{\sin(\lambda \ln x)}{\ln x}dx$

$\displaystyle I'(\lambda)=\int_{0}^{1}\cos(\lambda \ln x)dx=\int_{-\infty}^{0}e^x \cos(\lambda x)dx$

$\displaystyle =\left[ \frac{e^x \{ \cos(\lambda x)+\lambda \sin(\lambda x)\}}{1+\lambda^2}\right]_{-\infty}^{0}=\frac{1}{1+\lambda^2}$

Integrate both sides:

$\displaystyle I(\lambda)=\arctan(\lambda)+C$

For $\lambda=0$ we have $C=0$. so

$\displaystyle I(\lambda)=\arctan(\lambda)$

Therefore

$\displaystyle \int_{0}^{1}\frac{\sin( \ln x)}{\ln x}dx=I(1)=\arctan(1)=\frac{\pi}{4}$
 
Last edited:
Re: integrals (lots of them!)

Let's define...

$\displaystyle \varphi(t)=\int_{0}^{\infty} e^{-(x^{2}+\frac{t^{2}}{x^{2}})}\ dx$ (1)

... and now we derive (1)...

$\displaystyle \varphi^{'}(t)=-2\ t\ \int_{0}^{\infty} \frac{1}{x^{2}}\ e^{-(x^{2}+\frac{t^{2}}{x^{2}})}\ dx$ (2)

Setting in (2) $\displaystyle \tau=\frac{t}{x}$ in some steps we obtain...

$\displaystyle \varphi^{'}(t)=-2\ \int_{0}^{\infty} e^{-(\tau^{2}+\frac{t^{2}}{\tau^{2}})}\ d \tau = -2\ \varphi(t)$ (3)

The (3) is an easily solvable ODE and, taking into account the well known result...

$\displaystyle \int_{0}^{\infty} e^{-x^{2}}\ dx = \frac{\sqrt{\pi}}{2}$ (4)

... we obtain...

$\displaystyle \varphi(t)= \frac{\sqrt{\pi}}{2}\ e^{-2\ t}$ (5)

Setting in (5) t=1 we finally obtain...

$\displaystyle \int_{0}^{\infty} e^{-(x^{2}+\frac{1}{x^{2}})}\ dx =\frac{\sqrt{\pi}}{2}\ e^{-2}$ (6)

Kind regards

$\chi$ $\sigma$
 
Last edited:
Re: integrals (lots of them!)

$\displaystyle \int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2} \right)}dx$

Yeah that's right. I also used the same technique. Here is another solution which amazed me:

$\displaystyle I=\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2} \right)}dx=\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2}-2 \right)-\displaystyle 2}dx=e^{-2}\int_{0}^{\infty}e^{-\left(\displaystyle x^2+\dfrac{1}{x^2}-2 \right)}dx$

Use the fact that $\displaystyle \int_{0}^{\infty}f \left(x^2+\frac{1}{x^2}-2\right)dx=\int_{0}^{\infty}f \left(x^2\right)dx$:

$\displaystyle I=e^{-2}\int_{0}^{\infty}e^{-x^2}dx=e^{-2}\frac{\sqrt{\pi}}{2}$
 
Re: integrals (lots of them!)

You guys took the term 'magic differentiation' to a whole new level! (Giggle)
 
Re: integrals (lots of them!)

Solution for 5.

$$ \int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta $$

$\displaystyle I(\phi)=\int_{0}^{2\pi}e^{\phi \cos \theta}\cos(\phi \sin \theta)d\theta$

$\displaystyle I'(\phi)=\int_{0}^{2\pi}e^{\phi \cos \theta}(\cos(\theta)\cos(\phi \sin \theta)-\sin(\theta)\sin(\phi \sin \theta))d\theta$

$\displaystyle =\frac{1}{\phi}\int_{0}^{2\pi}\frac{d}{d\theta}(e^{\phi\cos \theta} \sin(\phi \sin\theta))d\theta=\frac{1}{\phi}\int_{0}^{2\pi}d(e^{\phi\cos \theta} \sin(\phi \sin\theta))$

$\displaystyle =0$

Integrate both sides:

$\displaystyle I(\phi)=0+C$

When $\phi=0$ then $C=2\pi$.

Therefore

$\displaystyle I(\phi)=2\pi$

so

$\displaystyle \int_{0}^{2\pi}e^{\cos \theta}\cos(\sin \theta)d\theta =I(1)=2\pi $
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
989
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K