What Are the Functions and Applications of the Lie Derivative?

Click For Summary

Discussion Overview

The discussion revolves around the functions and applications of the Lie derivative in differential geometry. Participants explore its definition, properties, and significance, addressing both theoretical and practical aspects.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants inquire about the motivation and applications of the Lie derivative, suggesting it is a directional derivative useful in manifold calculus.
  • One participant explains that the Lie derivative can be viewed as a first derivative of vector fields, representing the action of the flow of a vector field.
  • Another participant argues that the Lie derivative is useful because it provides a way to compute derivatives that remain within the tangent space of the manifold.
  • There is a contention regarding whether the Lie derivative is a first or second derivative, with some asserting it is a first derivative of vector fields while others claim it can be seen as a second derivative of functions on the manifold.
  • Participants reference the importance of reliable sources and textbooks for understanding the Lie derivative and its properties, indicating that some online resources may be misleading.
  • One participant emphasizes the need to clarify the distinction between the Lie derivative and other types of derivatives, highlighting the structure of vector fields and their derivatives.

Areas of Agreement / Disagreement

Participants express differing views on the classification of the Lie derivative as a first or second derivative, indicating a lack of consensus. The discussion includes competing interpretations of its properties and applications.

Contextual Notes

Some participants acknowledge limitations in their understanding or definitions, suggesting that the discussion may depend on specific mathematical contexts or interpretations.

  • #31
explain, this is one of the few times in all the years i have been posting here that i have learned something on a somewhat advanced topic in geometry from a new poster, who clearly understands it better than I do. your post has the authority of someone who understands what he is doing.

you not only are correct in your assertions, but they are elementary and intuitive. moreover you have no axe to grind. welcome to the forum. i think you have a lot to offer.

if you are not yet a mathematician, you can be. indeed you seem to be one
already. if not let me explicitly encourage you.
 
Last edited:
Physics news on Phys.org
  • #32
mathwonk said:
explain, this is one of the few times in all the years i have been posting here that i have learned something on a somewhat advanced topic in geometry from a new poster, who clearly understands it better than I do. your post has the authority of someone who understands what he is doing.

you not only are correct in your assertions, but they are elementary and intuitive. moreover you have no axe to grind. welcome to the forum. i think you have a lot to offer.

if you are not yet a mathematician, you can be. indeed you seem to be one
already. if not let me explicitly encourage you.

Thank you for your kind words. I am a physicist, but I am not sure I could be a mathematician. I was always frustrated by the textbooks that don't motivate anything but just list a handful of definitions and properties. This is okay when you are learning 2+2=4, but not okay when you are learning the Lie derivative. This frustration of mine is the reason why I always try to find motivation for mathematical notions. Mathematicians seem to be happy just writing lots of definitions and proving lots of statements about structure of some invented objects. There is still a lot of work needed before you can understand what objects are interesting and why. For me, the motivation to study math mainly comes from applications in physics. I am not sure I am sufficiently motivated to study even such "basic" things as algebraic geometry for its own sake.

Indeed, in my post I only meant that the flow does not move at one point, i.e. the center is a fixed point for the flow, but of course the tangent space at that point is mapped nontrivially onto itself.

But I would like to say that for me the Lie derivative meant nothing (I thought it was just an idle mathematician's game) until I saw that one can use it to calculate lots of things in general relativity.
 
  • #33
well i used to have a roommate who was a physicist and could explain thigns to me about lie groups and differential geometry, cazimir operators?

anyway i think when a physicist takes it upon himself to understand math concepts he has an advantage because of knowing how they are used and where they arose oftentimes.

riemann apparently used physical intuition in his discoveries and of course ed witten is a physicist who is also one of the best mathematicians.

it is very hard even for a mathematician to understand basic results like stokes theorem unless we try to grasp the idea of a flow, a divergence, a rotation, etc.

i believe these theorems first occurred in the introduction to maxwell's electricity and magnetism.

for me this approach was very hard, not having much physical intuition, and so i made them my own by proving topology results with them, like using green to prove the fundamental theorem of algebra, and gauss to prove there are no never zero vector fields tangent to a asphere.

i later learned (from bott) these are standard arguments in the field of differential topology, but i was just trying to find some motivating ideas to teach from in my several variables class.also I am a pure mathematician, so to me it was not always acceptable to assume a drop of water is a geometric point, or that the wind moves along a smoothly differentiable curve. to me physics deals with discrete concepts, and it takes a certain knack to reason correctly from erroneous premises!

finally in my old age i realized the mathematical versions of these ideas are merely idealizations of physical notions. but if you learn the ideal notion first it may be harder to grasp the real one.
 
Last edited:
  • #34
mathwonk said:
anyway i think when a physicist takes it upon himself to understand math concepts he has an advantage because of knowing how they are used and where they arose oftentimes.

also I am a pure mathematician, so to me it was not always acceptable to assume a drop of water is a geometric point, or that the wind moves along a smoothly differentiable curve. to me physics deals with discrete concepts, and it takes a certain knack to reason correctly from erroneous premises!

I think it's quite possible to avoid "physical arguments" when dealing with pure mathematics. A student just needs to understand why a new notion is being introduced. For example, in functional analysis: one is supposed to learn a large number of definitions; an operator can be closed, self-adjoint, essentially self-adjoint, bounded, continuous, semi-continuous, upper semi-continuous, weakly upper semi-continuous, closed in strong operator topology, closed in weak operator topology, and so on - ad infinitum. None of this makes any sense beyond a formal agglomeration of abstract constructions, unless a student builds an intuitive picture about why these definitions are useful. This intuitive picture does not need to go outside pure mathematics. The Banach space doesn't have to be the space of solutions of wave equations. But there must be some motivation and intuition. For example, one needs to understand that a given operator (given by some formula) is not always defined on all vectors in an infinite-dimensional space, but an operator can be sometimes extended so that it is defined on more vectors than initially. If an operator can be extended, then it's good to understand how it should be extended, for particular purposes. E.g. to make it self-adjoint or whatever. But if none of this is motivated, then students are left with the impression that this is a difficult and pointless game that requires a perfect photographic memory because you are supposed to memorize 500 definitions and you might use them at any time. I think this destroys motivation for a large portion of math students.

Also, once you go beyond a certain age, your memory is not so good and you <i>need</i> an intuitive picture before you can go on studying a new subject. So there are lots of older professors who never want to learn anything new, because new stuff appears so pointless and incomprehensible. These people probably don't remember that the stuff they learned when they were young also appeared largely pointless and incomprehensible, but they just memorized a large part of it because they could, and the rest somehow made sense. These professors can't teach in any different way either; they just heap their knowledge upon students' heads. This happens in physics as well as in maths.
 
  • #35
unfortunately it is difficult to avoid getting older. i have tried with only partial success. Watching spiderman seems to help, or perhaps this is called arrested development.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 16 ·
Replies
16
Views
6K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 20 ·
Replies
20
Views
7K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K