MHB What are the last three digits of the product of the positive roots?

Click For Summary
The discussion focuses on finding the last three digits of the product of the positive roots of the equation √1995 * x^(log1995 x) = x^2. A participant shares their solution, highlighting the steps taken to arrive at the answer. Another user expresses appreciation for the quick and well-explained solution provided. The exchange emphasizes collaboration and gratitude within the problem-solving process. The thread showcases a mathematical inquiry and community engagement in resolving it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
What is the last three digits of the product of the positive roots of $\large\sqrt{1995}x^{\log_{1995} x}=x^2$.
 
Mathematics news on Phys.org
Re: What is the last three digits of the product of the positive roots?

Here is my solution:

Let $$a=1995$$ and the equation may be written:

$$a^{\frac{1}{2}}x^{\log_a(x)}=x^2$$

Taking the log of base $a$ of both sides, we obtain:

$$\log_a\left(a^{\frac{1}{2}}x^{\log_a(x)} \right)=\log_a\left(x^2 \right)$$

Applying the log property:

$$\log_a(bc)=\log_a(b)+\log_a(c)$$ on the left side, we have:

$$\log_a\left(a^{\frac{1}{2}} \right)+\log_a\left(x^{\log_a(x)} \right)=\log_a\left(x^2 \right)$$

Applying the log property:

$$\log_a\left(b^c \right)=c\log_a(b)$$

we obtain:

$$\frac{1}{2}\log_a\left(a \right)+\log_a(x)\log_a\left(x \right)=2\log_a\left(x \right)$$

Applying the log property:

$$\log_a(a)=1$$

we have:

$$\frac{1}{2}+\log_a^2(x)=2\log_a\left(x \right)$$

Multiply through by 2:

$$1+2\log_a^2(x)=4\log_a\left(x \right)$$

Writing in standard quadratic form, there results:

$$2\log_a^2(x)-4\log_a\left(x \right)+1=0$$

Applying the quadratic formula, we find:

$$\log_a(x)=1\pm\frac{1}{\sqrt{2}}$$

Hence:

$$x=a^{1\pm\frac{1}{\sqrt{2}}}$$

The product $p$ of these positive roots is:

$$p=a^{1+\frac{1}{\sqrt{2}}}a^{1-\frac{1}{\sqrt{2}}}=a^2$$

Using the given value $a=1995$, we find:

$$p=1995^2=(2000-5)^2=2000^2-2\cdot2000\cdot5+5^2=1000k+25$$

Thus the last 3 digits of the product of the roots is $025$.
 
Re: What is the last three digits of the product of the positive roots?

MarkFL said:
Here is my solution:
Let $$a=1995$$ and the equation may be written: $$a^{\frac{1}{2}}x^{\log_a(x)}=x^2$$ Taking the log of base $a$ of both sides, we obtain: $$\log_a\left(a^{\frac{1}{2}}x^{\log_a(x)} \right)=\log_a\left(x^2 \right)$$ Applying the log property: $$\log_a(bc)=\log_a(b)+\log_a(c)$$ on the left side, we have: $$\log_a\left(a^{\frac{1}{2}} \right)+\log_a\left(x^{\log_a(x)} \right)=\log_a\left(x^2 \right)$$ Applying the log property: $$\log_a\left(b^c \right)=c\log_a(b)$$ we obtain: $$\frac{1}{2}\log_a\left(a \right)+\log_a(x)\log_a\left(x \right)=2\log_a\left(x \right)$$ Applying the log property: $$\log_a(a)=1$$ we have: $$\frac{1}{2}+\log_a^2(x)=2\log_a\left(x \right)$$ Multiply through by 2: $$1+2\log_a^2(x)=4\log_a\left(x \right)$$ Writing in standard quadratic form, there results: $$2\log_a^2(x)-4\log_a\left(x \right)+1=0$$ Applying the quadratic formula, we find: $$\log_a(x)=1\pm\frac{1}{\sqrt{2}}$$ Hence: $$x=a^{1\pm\frac{1}{\sqrt{2}}}$$ The product $p$ of these positive roots is: $$p=a^{1+\frac{1}{\sqrt{2}}}a^{1-\frac{1}{\sqrt{2}}}=a^2$$ Using the given value $a=1995$, we find: $$p=1995^2=(2000-5)^2=2000^2-2\cdot2000\cdot5+5^2=1000k+25$$ Thus the last 3 digits of the product of the roots is $025$.

Aww...it's amazing that you solved it so quickly and posted it with your well explained steps, I want to say thank you for participating, MarkFL!(heart)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
960
  • · Replies 2 ·
Replies
2
Views
2K