What Are the Limits of Simple Functions as x Approaches Infinity?

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Limits
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
see attached.
Relevant Equations
understanding of the l'hopital rule
1647927972699.png


Refreshing..i will attempt part (a) first ...of course this is easy...
$$\displaystyle{\lim_{x \to \infty}}\frac{x^2}{e^x} $$
$$\displaystyle{\lim_{x \to \infty}}\frac{2x}{e^x} $$
$$\displaystyle{\lim_{x \to \infty}}\frac{2}{e^x} =0$$
 
Last edited:
Physics news on Phys.org
Now to part (b);

##\int_0^∞ x^2e^{-x} dx##=##{\lim_{t \to \infty}}####\int_0^t x^2e^{-x} dx##
having indicated this then we shall have;

##\int x^2e^{-x} dx####=\dfrac{-x^2}{e^x}##+##\int 2xe^{-x} dx##
=##\dfrac{-x^2}{e^x}-2xe^{-x}##+##\int e^{-x} dx##
=##\dfrac{-x^2}{e^x}-2xe^{-x}-e^{-x}##
=##\dfrac{-x^2}{e^x}-\dfrac{2x}{e^x}-\dfrac{1}{e^x}##
=##{\lim_{t \to \infty}}####\dfrac{-t^2}{e^t}-\dfrac{2t}{e^t}-\dfrac{1}{e^t}-[0-0-1]## =##{\lim_{t \to \infty}}####\dfrac{-2t}{e^t}-\dfrac{2}{e^t}-\dfrac{1}{e^t}-[0-0-1]##
##={\lim_{t \to \infty}}####\dfrac{-2}{e^t}-\dfrac{2}{e^t}-\dfrac{1}{e^t}-[0-0-1]=[0-0-1]-[0-0-1]=-1+1=0##
thus converges and its value is ##0##.

your thoughts guys:cool:
 
Last edited:
Have you looked at the plot for ##x^2 e^{-x}##. Would it make sense that the integral would be 0?
 
  • Like
Likes chwala
DrClaude said:
Have you looked at the plot for ##x^2 e^{-x}##. Would it make sense that the integral would be 0?
Let me check...
 
Let me amend my post; it ought to be

Now to part (b);

##\int_0^∞ x^2e^{-x} dx##=##{\lim_{t \to \infty}}####\int_0^t x^2e^{-x} dx##
having indicated this then we shall have;

##\int x^2e^{-x} dx####=\dfrac{-x^2}{e^x}##+##\int 2xe^{-x} dx##
=##\dfrac{-x^2}{e^x}-2xe^{-x}##+##2\int e^{-x} dx##
=##\dfrac{-x^2}{e^x}-2xe^{-x}-2e^{-x}##
=##\dfrac{-x^2}{e^x}-\dfrac{2x}{e^x}-\dfrac{2}{e^x}##...therefore on taking limits as required we shall have;

=##{\lim_{t \to \infty}}####\left[\dfrac{-t^2}{e^t}-\dfrac{2t}{e^t}-\dfrac{2}{e^t}\right]####-[0-0-2]##
##{\lim_{t \to \infty}}####\left[\dfrac{-2t}{e^t}-\dfrac{2}{e^t}-\dfrac{2}{e^t}\right]####-[-0-0-2]##

##={\lim_{t \to \infty}}####\left[\dfrac{-2}{e^t}-\dfrac{2}{e^t}-\dfrac{2}{e^t}\right]####-[0-0-2]=[-0-0-0]-[-0-0-2]=0+2=2##

thus converges and its value is ##2##.

your thoughts guys:cool:
 
Last edited:
chwala said:
Let me amend my post; it ought to be

Now to part (b);

##\int_0^∞ x^2e^{-x} dx##=##{\lim_{t \to \infty}}####\int_0^t x^2e^{-x} dx##
having indicated this then we shall have;

##\int x^2e^{-x} dx####=\dfrac{-x^2}{e^x}##+##\int 2xe^{-x} dx##
=##\dfrac{-x^2}{e^x}-2xe^{-x}##+##2\int e^{-x} dx##
=##\dfrac{-x^2}{e^x}-2xe^{-x}-2e^{-x}##
=##\dfrac{-x^2}{e^x}-\dfrac{2x}{e^x}-\dfrac{2}{e^x}##...therefore on taking limits as required we shall have;

=##{\lim_{t \to \infty}}####\left[\dfrac{-t^2}{e^t}-\dfrac{2t}{e^t}-\dfrac{2}{e^t}\right]####-[0-0-1]##
##{\lim_{t \to \infty}}####\left[\dfrac{-2t}{e^t}-\dfrac{2}{e^t}-\dfrac{2}{e^t}\right]####-[-0-0-2]##

##={\lim_{t \to \infty}}####\left[\dfrac{-2}{e^t}-\dfrac{2}{e^t}-\dfrac{2}{e^t}\right]####-[0-0-2]=[-0-0-0]-[-0-0-2]=0+2=2##

thus converges and its value is ##2##.

your thoughts guys:cool:
I checked the result, which is correct. So either you made a mistake twice in different directions, or it is ok.
 
fresh_42 said:
I checked the result, which is correct. So either you made a mistake twice in different directions, or it is ok.
I had made a mistake earlier by missing the ##'2'## ...after integration by parts...i.e in my post ##2## ...I amended that in my post ##5##...I didn't want to interfere with the post so as to make it easier for people to follow...
Just amended post ##5## ...latex typo...
 
Last edited:
The integrand is non-negative, so the integral can be zero only if the integrand is zero almost everywhere. Clearly, that is not the case. The result you arrived at later is correct.
 

Similar threads

Back
Top