What are the most critical parameters in high-speed machines: stress or strain?

  • Thread starter Thread starter zoltrix
  • Start date Start date
Click For Summary
In high-speed machines, the critical parameters often depend on specific situations, with inertial forces and natural frequency being significant factors. While both stress and strain are important, deformation tends to be a more pressing issue than stress in these applications. The relationship between deflection and length indicates that even small changes can lead to substantial deformations. Additionally, factors like friction heating and aerodynamic forces can greatly impact machine performance. Ultimately, understanding the balance between these parameters is essential for optimizing high-speed machine design.
zoltrix
Messages
85
Reaction score
7
hello
consider an high speed machine
the inertial forces exceed the static ones
of course duttile materials
generally speaking which ones are the most critical parameters ?
stresses (von Mises etc) or strains ?
 
Engineering news on Phys.org
It is situation specific. The most critical parameter(s) could be one or more of:

Inertial forces (machines with reciprocating parts)
Natural frequency / critical speed (high speed shafts)
Stress
Strain
Friction heating (Ask me about the time we put 8 ball bearings in a volume the size of a basketball that generated 2 kW of heat)
Aerodynamic forces (Napkin folders at 12,000 napkins per minute)
Deflection (Can be too large at low strain)
Flame speed (Internal combustion engine)

And more, but that's the first ones off the top of my head. And all of the above are based on my personal experience with high speed machines.
 
jrmichler said:
Friction heating (Ask me about the time we put 8 ball bearings in a volume the size of a basketball that generated 2 kW of heat)
:oops:
 
I suppose that for high speed machines deformations are , generally speaking, a more serious issue than stresses
just to make it simple, take an hinged-hinged square linkage subjected to an inertial transversal load concentrated in the center of mass
max deflection is proportional to length^3 while max stress to length
of course other parametrs might be even more important, it is so obvious that IMHO there was no need to mention them
 
zoltrix said:
I suppose that for high speed machines deformations are , generally speaking, a more serious issue than stresses
This is assuming the position is important. It may be totally irrelevant for the machine to do its job properly. Deformation might even be a desired feature.
 
Usually, strength and yield behavior is quantified in terms of the principal stresses.
 
https://newatlas.com/technology/abenics-versatile-active-ball-joint-gear/ They say this could be used as a shoulder joint for robots. Mind boggling! I'm amazed this has been done in real life. The model they show seems impractical to me. The ball spins in place but doesn't connect to anything. I guess what they would do would be attach a shaft to that ball, then restrict the motion so the drive gears don't contact the shaft. The ball would have two limited degrees of freedom then a...

Similar threads

Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
19K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
10K
Replies
3
Views
4K
  • · Replies 8 ·
Replies
8
Views
449