What Are the Rules for Determining the Determinant of a 4x4 Matrix?

  • Context: MHB 
  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Determinant Matrix
Click For Summary
SUMMARY

The discussion focuses on calculating the determinant of a 4x4 matrix using various methods, including Jacobi's Rule and Elementary Row Operations (EROs). The original matrix provided is $$ \left| {\begin{array}{cccc} 2 & -2 & -3 & 8 \\ 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ -2 & 6 & -4 & 19 \end{array} } \right|.$$ Participants clarify the importance of tracking changes to the determinant during EROs and the effects of row operations. The conversation emphasizes that while transforming the matrix to upper triangular form simplifies determinant calculation, one must account for the impact of row operations on the determinant value.

PREREQUISITES
  • Understanding of 4x4 matrices and determinants
  • Familiarity with Jacobi's Rule for determinant calculation
  • Knowledge of Elementary Row Operations (EROs)
  • Ability to perform matrix transformations
NEXT STEPS
  • Study the application of Jacobi's Rule in detail
  • Learn how to perform and track Elementary Row Operations (EROs)
  • Explore methods for transforming matrices to upper triangular form
  • Investigate the implications of row operations on determinant values
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, matrix theory, and determinant calculations. This discussion is beneficial for anyone looking to deepen their understanding of matrix operations and determinant properties.

Petrus
Messages
702
Reaction score
0
Hello MHB,
calculate determinant of:
$$
\left| {\begin{array}{cc} 2 & -2 & -3 & 8 \\ 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ -2 & 6 & -4 & 19 \end{array} } \right|$$
so I multiplication -2 row 2 and add it to row 1, multiplication 3 to row 2 and add it to row 3, multiplicate 2 to row 2 and add it to row 4 and get
$$
\left| {\begin{array}{cc} 0 & 0 & -5 & -10 \\ 1 & -1 & 2 & -1 \\ 0 & 1 & 7 & -4 \\ 0 & 4 & 0 & 17 \end{array} } \right|$$ and develops in columne 1 and use sarrus rule but I get wrong.

Regards,
$$|\rangle$$
 
Physics news on Phys.org
There are several methods to do this. You can just use Jacobi's Rule as is to obtain
\begin{align*}\left| \begin{array}{cccc} 2 & -2 & -3 & 8 \\ 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ -2 & 6 & -4 & 19 \end{array} \right|
=&(+1)(2)\left| \begin{array}{ccc}-1 & 2 & -1 \\ 4 & 1 & -1 \\ 6 & -4 & 19 \end{array} \right|
+(-1)(-2)\left| \begin{array}{ccc} 1 & 2 & -1 \\ -3 & 1 & -1 \\ -2 & -4 & 19 \end{array} \right|\\
+&(+1)(-3)\left| \begin{array}{ccc} 1 & -1 & -1 \\ -3 & 4 & -1 \\ -2 & 6 & 19 \end{array} \right|
+(-1)(8)\left| \begin{array}{ccc} 1 & -1 & 2 \\ -3 & 4 & 1 \\ -2 & 6 & -4 \end{array} \right|,
\end{align*}
and keep drilling down in each matrix.
Alternatively, you can do ERO's on the matrix, keeping track of how each ERO changes the determinant.

You can certainly do the ERO's you did. I get
$$\left| \begin{array}{cccc} 2 & -2 & -3 & 8 \\ 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ -2 & 6 & -4 & 19 \end{array} \right| \to
\left| \begin{array}{cccc} 0 & 0 & -7 & 10 \\ 1 & -1 & 2 & -1 \\ 0 & 1 & 7 & -4 \\ 0 & 4 & 0 & 17 \end{array} \right|.$$
If I compare to yours, which is
$$\left| {\begin{array}{cc} 0 & 0 & -5 & -10 \\ 1 & -1 & 2 & -1 \\ 0 & 1 & 7 & -4 \\ 0 & 4 & 0 & 17 \end{array} } \right|,$$
I see that there are some differences. Don't forget, when you actually do the determinant, that the $-1$ in the $2,1$ position has a minus sign associated with it in the Jacobi expansion.
 
Ackbach said:
There are several methods to do this. You can just use Jacobi's Rule as is to obtain
\begin{align*}\left| \begin{array}{cccc} 2 & -2 & -3 & 8 \\ 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ -2 & 6 & -4 & 19 \end{array} \right|
=&(+1)(2)\left| \begin{array}{ccc}-1 & 2 & -1 \\ 4 & 1 & -1 \\ 6 & -4 & 19 \end{array} \right|
+(-1)(-2)\left| \begin{array}{ccc} 1 & 2 & -1 \\ -3 & 1 & -1 \\ -2 & -4 & 19 \end{array} \right|\\
+&(+1)(-3)\left| \begin{array}{ccc} 1 & -1 & -1 \\ -3 & 4 & -1 \\ -2 & 6 & 19 \end{array} \right|
+(-1)(8)\left| \begin{array}{ccc} 1 & -1 & 2 \\ -3 & 4 & 1 \\ -2 & 6 & -4 \end{array} \right|,
\end{align*}
and keep drilling down in each matrix.
Alternatively, you can do ERO's on the matrix, keeping track of how each ERO changes the determinant.

You can certainly do the ERO's you did. I get
$$\left| \begin{array}{cccc} 2 & -2 & -3 & 8 \\ 1 & -1 & 2 & -1 \\ -3 & 4 & 1 & -1 \\ -2 & 6 & -4 & 19 \end{array} \right| \to
\left| \begin{array}{cccc} 0 & 0 & -7 & 10 \\ 1 & -1 & 2 & -1 \\ 0 & 1 & 7 & -4 \\ 0 & 4 & 0 & 17 \end{array} \right|.$$
If I compare to yours, which is
$$\left| {\begin{array}{cc} 0 & 0 & -5 & -10 \\ 1 & -1 & 2 & -1 \\ 0 & 1 & 7 & -4 \\ 0 & 4 & 0 & 17 \end{array} } \right|,$$
I see that there are some differences. Don't forget, when you actually do the determinant, that the $-1$ in the $2,1$ position has a minus sign associated with it in the Jacobi expansion.
Hello Ackbach,
I am really grateful for the fast responed!:) Thanks a lot! I did not see I start to misscalculate ...:( I have read about a triangle way, can I also use it?

Regards
$$|\rangle$$
 
Petrus said:
Hello Ackbach,
I am really grateful for the fast responed!:) Thanks a lot! I did not see I start to misscalculate ...:( I have read about a triangle way, can I also use it?

Regards
$$|\rangle$$

If you make your matrix upper triangular, the determinant of the resulting matrix is the product of the entries on the main diagonal. BUT, you still have to keep track of how your ERO's affect the determinant.
 
Ackbach said:
BUT, you still have to keep track of how your ERO's affect the determinant.
Hello Ackbach,
What did you mean with that? If you mean with it will be an multiplicate -1 to the determinant because of well in Swedish my book called it "schedule"?
+ - + -
- + - +
+ - + -
- + - +
Regards,
$$|\rangle$$
 
No, I mean this:

The ERO that takes a multiple of one row, adds it to another row, and stores it in that row, does not change the determinant.

The ERO that switches two rows multiplies the determinant by $-1$.

The ERO that multiplies a row by a nonzero number $m$ also multiplies the determinant by $m$.
 
Ackbach said:
No, I mean this:

The ERO that takes a multiple of one row, adds it to another row, and stores it in that row, does not change the determinant.

The ERO that switches two rows multiplies the determinant by $-1$.

The ERO that multiplies a row by a nonzero number $m$ also multiplies the determinant by $m$.
Thanks again Ackbach!

Regards
$$|\rangle$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K