MHB What are the values of a_n and b_n for a given sequence?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$a_{n+1}=5a_n-2 b_n$
$b_{n+1}=a_n+2 b_n$
$given :\,\, a_1=1,b_1=-1$
$find :$
$a_n,\,\,and,\,\, b_n$
 
Mathematics news on Phys.org
Albert said:
$a_{n+1}=5a_n-2 b_n$
$b_{n+1}=a_n+2 b_n$
$given :\,\, a_1=1,b_1=-1$
$find :$
$a_n,\,\,and,\,\, b_n$

We have:
$$a_{n+1}=5a_n-2b_n\,\,\,\, (*)$$
$$b_{n+1}=a_n+2b_n\,\,\,\, (**)$$
Add (*) and (**) to get:
$$b_{n+1}+a_{n+1}=6a_n \Rightarrow b_{n+1}=6a_n-a_{n+1} \Rightarrow b_n=6a_{n-1}-a_n\,\,\, (***)$$
Substitute (***) in (*) to get:
$$a_{n+1}=5a_n-12a_{n-1}+2a_n \Rightarrow a_{n+1}=7a_n-12a_{n-1}$$
The solution of above recursive relation is of the form $a_n=c_1 4^n+c_2 3^n$. We are given $a_1=1$. $a_2$ can be found from (*) and comes out to be 7. From these two conditions, $c_1=1$ and $c_2=-1$. Hence $a_n=4^n-3^n$.

From (***),
$$b_n=6a_{n-1}-a_n=6(4^{n-1}-3^{n-1})-(4^n-3^n)=4^{n-1}\cdot 2 -3^{n-1}\cdot 3$$
$$\Rightarrow b_n=2\cdot 4^{n-1}-3^n$$
$\blacksquare$
 
Pranav said:
We have:
$$a_{n+1}=5a_n-2b_n\,\,\,\, (*)$$
$$b_{n+1}=a_n+2b_n\,\,\,\, (**)$$
Add (*) and (**) to get:
$$b_{n+1}+a_{n+1}=6a_n \Rightarrow b_{n+1}=6a_n-a_{n+1} \Rightarrow b_n=6a_{n-1}-a_n\,\,\, (***)$$
Substitute (***) in (*) to get:
$$a_{n+1}=5a_n-12a_{n-1}+2a_n \Rightarrow a_{n+1}=7a_n-12a_{n-1}$$
The solution of above recursive relation is of the form $a_n=c_1 4^n+c_2 3^n$. We are given $a_1=1$. $a_2$ can be found from (*) and comes out to be 7. From these two conditions, $c_1=1$ and $c_2=-1$. Hence $a_n=4^n-3^n$.

From (***),
$$b_n=6a_{n-1}-a_n=6(4^{n-1}-3^{n-1})-(4^n-3^n)=4^{n-1}\cdot 2 -3^{n-1}\cdot 3$$
$$\Rightarrow b_n=2\cdot 4^{n-1}-3^n$$
$\blacksquare$
excellent(Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top