MHB What are the values of a_n and b_n for a given sequence?

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion focuses on finding the values of the sequences a_n and b_n defined by the recurrence relations a_{n+1}=5a_n-2b_n and b_{n+1}=a_n+2b_n, with initial conditions a_1=1 and b_1=-1. Participants explore methods to derive explicit formulas for a_n and b_n based on these recurrences. The conversation emphasizes the importance of correctly applying the recurrence relations to compute subsequent terms. There is a consensus on the need for clear calculations to ensure accurate results. Ultimately, the goal is to express both sequences in closed form for any integer n.
Albert1
Messages
1,221
Reaction score
0
$a_{n+1}=5a_n-2 b_n$
$b_{n+1}=a_n+2 b_n$
$given :\,\, a_1=1,b_1=-1$
$find :$
$a_n,\,\,and,\,\, b_n$
 
Mathematics news on Phys.org
Albert said:
$a_{n+1}=5a_n-2 b_n$
$b_{n+1}=a_n+2 b_n$
$given :\,\, a_1=1,b_1=-1$
$find :$
$a_n,\,\,and,\,\, b_n$

We have:
$$a_{n+1}=5a_n-2b_n\,\,\,\, (*)$$
$$b_{n+1}=a_n+2b_n\,\,\,\, (**)$$
Add (*) and (**) to get:
$$b_{n+1}+a_{n+1}=6a_n \Rightarrow b_{n+1}=6a_n-a_{n+1} \Rightarrow b_n=6a_{n-1}-a_n\,\,\, (***)$$
Substitute (***) in (*) to get:
$$a_{n+1}=5a_n-12a_{n-1}+2a_n \Rightarrow a_{n+1}=7a_n-12a_{n-1}$$
The solution of above recursive relation is of the form $a_n=c_1 4^n+c_2 3^n$. We are given $a_1=1$. $a_2$ can be found from (*) and comes out to be 7. From these two conditions, $c_1=1$ and $c_2=-1$. Hence $a_n=4^n-3^n$.

From (***),
$$b_n=6a_{n-1}-a_n=6(4^{n-1}-3^{n-1})-(4^n-3^n)=4^{n-1}\cdot 2 -3^{n-1}\cdot 3$$
$$\Rightarrow b_n=2\cdot 4^{n-1}-3^n$$
$\blacksquare$
 
Pranav said:
We have:
$$a_{n+1}=5a_n-2b_n\,\,\,\, (*)$$
$$b_{n+1}=a_n+2b_n\,\,\,\, (**)$$
Add (*) and (**) to get:
$$b_{n+1}+a_{n+1}=6a_n \Rightarrow b_{n+1}=6a_n-a_{n+1} \Rightarrow b_n=6a_{n-1}-a_n\,\,\, (***)$$
Substitute (***) in (*) to get:
$$a_{n+1}=5a_n-12a_{n-1}+2a_n \Rightarrow a_{n+1}=7a_n-12a_{n-1}$$
The solution of above recursive relation is of the form $a_n=c_1 4^n+c_2 3^n$. We are given $a_1=1$. $a_2$ can be found from (*) and comes out to be 7. From these two conditions, $c_1=1$ and $c_2=-1$. Hence $a_n=4^n-3^n$.

From (***),
$$b_n=6a_{n-1}-a_n=6(4^{n-1}-3^{n-1})-(4^n-3^n)=4^{n-1}\cdot 2 -3^{n-1}\cdot 3$$
$$\Rightarrow b_n=2\cdot 4^{n-1}-3^n$$
$\blacksquare$
excellent(Yes)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K